[1]
International Organization for Standardization (ISO), ISO 13381-1:2004 – Condition Monitoring and Diagnostics of Machines – Prognostics – General Guidelines, ISO, Geneva, 2004.
Google Scholar
[2]
D.A. Tobon-Mejia, K. Medjaher, N. Zerhouni, The ISO 13381-1 standard's failure prognostics process through an example, 2010 Prognostics and System Health Management Conference, 2010, pp.1-12.
DOI: 10.1109/phm.2010.5413482
Google Scholar
[3]
M. Baur, P. Albertelli, M. Monno, A review of prognostics and health management of machine tools, The International Journal of Advanced Manufacturing Technology, vol. 110, no. 5-6, pp.1417-1438, 2020
DOI: 10.1007/s00170-020-05202-3
Google Scholar
[4]
M. Ben-Daya, S.O. Duffuaa, A. Raouf, J. Knezevic, D. Ait-Kadi (Eds.), Handbook of Maintenance Management and Engineering, Springer, London, 2009
DOI: 10.1007/978-1-84882-472-0
Google Scholar
[5]
E.I. Basri, I.H. Abdul Razak, H. Ab-Samat, S. Kamaruddin, Preventive maintenance (PM) planning: a review, Journal of Quality in Maintenance Engineering, vol. 23, pp.114-143, 2017.
DOI: 10.1108/jqme-04-2016-0014
Google Scholar
[6]
A.K.S. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mechanical Systems and Signal Processing, vol. 20, pp.1483-1510, 2006.
DOI: 10.1016/j.ymssp.2005.09.012
Google Scholar
[7]
M. Kordestani, M.E. Orchard, K. Khorasani, M. Saif, An overview of the state of the art in aircraft prognostic and health management strategies, IEEE Transactions on Instrumentation and Measurement, vol. 72, pp.1-15, 2023.
DOI: 10.1109/tim.2023.3236342
Google Scholar
[8]
C. Li, S. Li, Y. Feng, K. Gryllias, F. Gu, M. Pecht, Small data challenges for intelligent prognostics and health management: a review, Artificial Intelligence Review, vol. 57, no. 8, p.214, 2024.
DOI: 10.1007/s10462-024-10820-4
Google Scholar
[9]
F.W. Taylor, On the art of cutting metals, vol. 23, American Society of Mechanical Engineers, 1906.
Google Scholar
[10]
A. Mosallam, K. Medjaher, N. Zerhouni, Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction, Journal of Intelligent Manufacturing, vol. 27, pp.1037-1048, 2014.
DOI: 10.1007/s10845-014-0933-4
Google Scholar
[11]
A. Tayade, S. Patil, V. Phalle, F. Kazi, S. Powar, Remaining useful life (RUL) prediction of bearing by using regression model and principal component analysis (PCA) technique, Vibroengineering Procedia, vol. 23, pp.30-36, 2019.
DOI: 10.21595/vp.2019.20617
Google Scholar
[12]
Z. Kang, C. Catal, B. Tekinerdogan, Remaining useful life (RUL) prediction of equipment in production lines using artificial neural networks, Sensors, vol. 21, no. 3, p.932, 2021.
DOI: 10.3390/s21030932
Google Scholar
[13]
A. Widodo, B.S. Yang, Machine health prognostics using survival probability and support vector machine, Expert Systems with Applications, vol. 38, no. 7, pp.8430-8437, 2011.
DOI: 10.1016/j.eswa.2011.01.038
Google Scholar
[14]
C. Louen, S.X. Ding, C. Kandler, A new framework for remaining useful life estimation using support vector machine classifier, in: 2013 Conference on Control and Fault-Tolerant Systems (SysTol), IEEE, Oct. 2013, pp.228-233.
DOI: 10.1109/systol.2013.6693833
Google Scholar
[15]
L. Zhang, Z. Liu, D. Luo, J. Li, H.Z. Huang, "Review of remaining useful life prediction using support vector machine for engineering assets," in: 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), IEEE, July 2013, pp.1793-1799.
DOI: 10.1109/qr2mse.2013.6625925
Google Scholar
[16]
Y. Freund, R.E. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, 55 (1) (1997) 119–139
DOI: 10.1006/jcss.1997.1504
Google Scholar
[17]
https://www.kaggle.com/datasets/m0ntecarl0/engine-time-to-failure
Google Scholar
[18]
O. Hornyák, Data-Driven Engine Health Monitoring with AI. Eng. Proc. 2024, 79, 39
DOI: 10.3390/engproc2024079039
Google Scholar
[19]
O. Hornyák, Predicting Remaining Useful Life Using AdaBoost Algorithm python code https://colab.research.google.com/drive/1S_QDf2M2AwQPD4N5JUQdwMxBefor_JC0
Google Scholar