Simulation of the Value Stream in the Field of an Industrial Process Using Visual Components

Article Preview

Abstract:

The study focuses on simulating the current and future value stream of external cable production, identifying bottlenecks, and proposing improvements. It provides a comprehensive overview of production processes, analyzing their current state and modeling future developments. Utilizing Visual Components simulation software, the study evaluates modernization efforts and quantifies their impact. Special attention is given to lean management, Industry 4.0, and robotics. The results guide recommendations for optimizing workstations, workforce, and efficiency, ensuring a more balanced and streamlined production process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-138

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Nagy, The concept and critical issues of Industry 4.0 - based on company interviews, Management Science - Budapest Management Review, vol. 50, no. 1, p.14–26, 2019.

DOI: 10.14267/VEZTUD.2019.01.02

Google Scholar

[2] F. M. Pankotay, The Expansion of Lean in Practise, in Proceedings of, Sopron, Hungary, Nov. 2017. [Online]. Available: https://www.researchgate.net/publication/345685070

Google Scholar

[3] Koncz, A., Tools of Lean Thinking, Gradus, vol. 4, no. 1, pp.229-241, 2017. [Online]. Available: https://gradus.kefo.hu/archive/2017-1/2017_1_ENG_001_Koncz.pdf

Google Scholar

[4] L. Koloszár and F. M. Pankotay, Lean tools for SME development, GT, 2017.

DOI: 10.21637/GT.2017.3-4.05

Google Scholar

[5] Cs. Nagy and E. Molnár, The spatial context of Industry 4.0 in the light of robotisation: what are the impacts of the process in Hungary?, Regional Development and Innovation, vol. 12, no. 2, pp.3-18, 2018. ISSN 1789-0578. [Online]. Available: http://real.mtak.hu/id/eprint/100050.

Google Scholar

[6] H. Nasir. Research and application of industrial robots and manipulators in automotive and automotive engineering, review, 69 (2). pp.36-43. ISSN 0016-8572, (2018)

Google Scholar

[7] Information on https://www.visualcomponents.com/

Google Scholar

[8] J. Oláh and J. Popp: Lean Management, Six Sigma and Lean Six Sigma: Possible Connections, Óbuda University e-Bulletin (ISSN: 2062-2872) (2016),[Online]. Available: https://uni-obuda.hu/e-bulletin/Olah_Popp_8.pdf

DOI: 10.1007/978-3-540-85060-1_8

Google Scholar

[9] J. F. Krafcik,: Triumph of the Lean Production System, Sloan Management Review, vol. 30, no. 1, p.41, Fall 1988. [Online]. Available: https://edisciplinas.usp.br/pluginfile. php/5373958/mod_resource/content/4/krafcik_TEXTO_INTEGRAL.pdf

Google Scholar

[10] X. Cheng and H. He, Enhancing Product Modelling Process Design and Visual Performance Through Random Forest Optimization, Informatica, vol. 48, pp.143-156, 2024.

DOI: 10.31449/inf.v48i14.5800

Google Scholar

[11] G. Weigert, S. Horn, and S. Werner, Optimization of manufacturing processes by distributed simulation, International Journal of Production Research, vol. XX, pp.3677-3692, Oct. 2011.

DOI: 10.1080/00207540600851774

Google Scholar

[12] Kłos, J. Patalas-Maliszewska, and P. Trebuna, Improving Manufacturing Processes Using Simulation Methods, Applied Computer Science, vol. 12, no. 4, pp.7-17, 2016.

Google Scholar

[13] J. Košturiak and M. Gregor, Simulation in production system life cycle, Computers in Industry, vol. 38, p.159–172, 1999.

DOI: 10.1016/s0166-3615(98)00116-x

Google Scholar

[14] P. Solding, D. Petku, and N. Mardan, Using simulation for more sustainable production systems – methodologies and case studies, Int. J. Sustain. Eng., vol. 2, no. 2, p.111–122, Jun. 2009.

DOI: 10.1080/19397030902960994

Google Scholar

[15] M. K. Chernyakov, M. M. Chernyakova, és K. Ch. Akberov, Simulation Design of Manufacturing Processes and Production Systems, Advances in Engineering Research (AER), vol. 157, Atlantis Press, 2019.

Google Scholar

[16] Ö. F. Baykoç and S. Erol, Simulation modelling and analysis of a JIT production system, Int. J. Production Economics, vol. 55, p.203–212, 1998.

DOI: 10.1016/s0925-5273(98)00061-9

Google Scholar

[17] A. Sproedt, J. Plehn, P. Schönsleben, and C. Herrmann, A simulation-based decision support for eco-efficiency improvements in production systems, Journal of Cleaner Production, vol. 105, p.389–405, 2015.

DOI: 10.1016/j.jclepro.2014.12.082

Google Scholar

[18] G. Fedorko, V. Molnár, J. Strohamndl, P. Horváthová, D. Strnad, and V. Cech, Research on Using the Tecnomatix Plant Simulation for Simulation and Visualization of Traffic Processes at the Traffic Node, Appl. Sci., vol. 12, no. 23, p.12131, 2022.

DOI: 10.3390/app122312131

Google Scholar

[19] M. Pekarcikova, P. Trebuna, M. Kliment, and M. Dic, Solution of Bottlenecks in the Logistics Flow by Applying the Kanban Module in the Tecnomatix Plant Simulation Software, Sustainability, vol. 13, no. 14, p.7989, 2021.

DOI: 10.3390/su13147989

Google Scholar

[20] J. Kopec, L. Lachvajderová, M. Kliment, és P. Trebuňa, Simulation Processes in Companies Using PLM and Tecnomatix Plant Simulation Software, Acta Simulatio, vol. 7, no. 3, p.13–18, 2021.

DOI: 10.22306/asim.v7i3.61

Google Scholar