Speciation of Selenium in Stagnic Anthrosols of Se-Rich Area in Hainan Island

Article Preview

Abstract:

Hainan soil pH continues to decrease, and the reduced soil selenium availability of stagnic anthrosols caused by soil acidification influence the selenium absorption in selenium-rich areas. Taking stagnic anthrosols in selenium-rich areas as the object, the soil total selenium concentration and sequential fractionations of surface layer were analyzed, which are Exchangeable (EX), Carbonate-bound (AC), Fe & Mn oxided-bound (OX), Organic-bound (OC) and Residual (RES). The results show that selenium in soil is unevenly distributed among various fractionations, with the RES and OC accounting for the highest proportion. The sum of the selenium content of these two forms is 89.84%. The AC is easily absorbed and utilized by crops. The selenium content in EX and AC are only 1.64% and 2.17%. Soil pH has the most significant impact on the content of EX. Soil acidification will significantly reduce the proportion of this part of selenium, resulting in a decrease in the bioavailability of soil selenium. Especially when the soil pH is higher than 5.5, the proportion of EX in the soil increases with the the pH dropped significantly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-20

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Hossain, M. Skalicky, M. Brestic, S. Maitra, S. Sarkar, Z. Ahmad, H. Vemuri, S. Garai, M. Mondal, R. Bhatt, P. Kumar, P. Banerjee, S. Saha, T. Islam and A. M. Laing, "Selenium biofortification: roles, mechanisms, responses and prospects", Molecules, vol. 26, p.881, 2021.

DOI: 10.3390/molecules26040881

Google Scholar

[2] A. Khan, S. Khan, M. A. Khan, Z. Qamar and M. Waqas, "The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review", Environmental science and pollution research, vol. 22, pp.13772-13799, 2015.

DOI: 10.1007/s11356-015-4881-0

Google Scholar

[3] R. Gong, C. Ai, B. Zhang and X. Cheng, "Effect of selenite on organic selenium speciation and selenium bioaccessibility in rice grains of two Se-enriched rice cultivars", Food chemistry, vol. 264, pp.443-448, 2018.

DOI: 10.1016/j.foodchem.2018.05.066

Google Scholar

[4] J. Zhao, Y. Yang, K. Zhang, J. Jeong, Z. Zeng and H. Zang, "Does crop rotation yield more in China? A meta-analysis", Field Crops Research, vol. 245, p.107659, 2020.

DOI: 10.1016/j.fcr.2019.107659

Google Scholar

[5] A. Kabate-Pendias and H. Pendias, "Trace elements in soils and plants" Boca Raton, Florida: CRC Press, 2001.

Google Scholar

[6] M. Gupta and S. Gupta, "An overview of selenium uptake, metabolism, and toxicity in plants", Frontiers in plant science, vol. 7, p.2074, 2017.

DOI: 10.3389/fpls.2016.02074

Google Scholar

[7] K. H. Liu, Y.T. Fang, F.M. Yu, Q. Liu, F. R. Li and S.L. Peng, "Soil acidification in response to acid deposition in three subtropical forests of subtropical China", Pedosphere, vol. 20, pp.399-408, 2010.

DOI: 10.1016/s1002-0160(10)60029-x

Google Scholar

[8] A. Zayed, C. M. Lytle and N. Terry, "Accumulation and volatilization of different chemical species of selenium by plants", Planta, vol. 206, pp.284-292, 1998.

DOI: 10.1007/s004250050402

Google Scholar

[9] S. Fernandez, S. Seoane and A. Merino. "Plant heavy metal concentrations and soil biological properties in agricultural serpentine soils", Communications in Soil Science and Plant Analysis, vol. 30, pp.1867-1884, 1999.

DOI: 10.1080/00103629909370338

Google Scholar

[10] M. Shahid, N. K. Niazi, S. Khalid, B. Murtaza, I. Bibi, and M. I. Rashid, "A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health", Environmental pollution, vol. 234, pp.915-934, 2018.

DOI: 10.1016/j.envpol.2017.12.019

Google Scholar

[11] T. Alekseeva, A. Alekseev, R. K. Xu, A. Z. Zhao and P. Kalinin, "Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of Alfisols in eastern China", Environmental geochemistry and health, vol. 33, pp.137-148, 2011.

DOI: 10.1007/s10653-010-9327-5

Google Scholar

[12] M. Qaswar, H. Jing, W. Ahmed, D. Li, S. Liu, L. Zhang, A. Cai, L. Liu, Y. Xu, J. Gao and H. Zhang, "Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil", Soil and Tillage Research, vol. 198, p.104569, 2020.

DOI: 10.1016/j.still.2019.104569

Google Scholar

[13] V. K. Sharma, T. J. McDonald, M. Sohn, G. A. K. Anquandah, M. Pettine and R. Zboril, "Biogeochemistry of selenium. A review", Environmental Chemistry Letters, vol. 13, pp.49-58, 2015.

DOI: 10.1007/s10311-014-0487-x

Google Scholar

[14] Z. Li, D. Zhu, J. H. Lindhardt, S. M. Lin, X. Ke and L. Cui, "Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem", Environmental Science & Technology, vol. 55, pp.4658-4668, 2021.

DOI: 10.1021/acs.est.0c04849

Google Scholar

[15] Z. Li, D. Liang, Q. Peng, Z. Cui, J. Huang and Z. Lin, "Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review", Geoderma, vol. 295, pp.69-79, 2017.

DOI: 10.1016/j.geoderma.2017.02.019

Google Scholar

[16] B. Zhang, Y. Wei, S. Yan, H. Shi, Y. Nie, G. Zou, X, Zhang and L. Luo, "Characterization of selenium accumulation of different rice genotypes in Chinese natural seleniferous soil" Plant, Soil & Environment, vol. 65, pp.15-20, 2019.

DOI: 10.17221/603/2018-pse

Google Scholar