Development of Small Punch Creep Test Rig, Testing and Validation

Article Preview

Abstract:

Power generation components that operating under extreme conditions are susceptible to creep deformation. Such components rely on comprehensive creep data to ensure its integrity, smooth plant operation, and avoid fatal accident due components catastrophic failure. The small punch creep (SPC) test has emerged as a promising alternative to traditional uniaxial creep testing (UCT), offering advantages in terms of the small amount of material required for test sample. This study aims to develop a cost-effective SPC test rig integrated with an existing UCT machine and investigate its reliability in predicting the creep properties. Comparative analysis establishes a robust correlation factor (Ψ=2.5) between SPC and UCT data for Grade 91 steel at 600°C, enabling accurate estimation of creep rupture life across a broad stress spectrum. Fractographic investigations reveal the transition from ductile to brittle fracture as load levels decrease. The successful of SPC rig development and validation not only expands the creep testing toolset but also enables more efficient material characterization, optimized component design, and improved life prediction methodologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-36

Citation:

Online since:

August 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. A. Alang, L. Zhao, K. Nikbin, Evaluation of Monkman-Grant strain as a key parameter in ductility exhaustion damage model to predict creep rupture of Grade 92 steel, J. Strain Anal. Eng. Des. 57 (2022) 392-408.

Google Scholar

[2] S. Arunkumar, Small punch creep test: An overview, Met. Mater. Int. 27 (2021) 1897–1914.

DOI: 10.1007/s12540-020-00783-w

Google Scholar

[3] British Standards Institution, Metallic materials - Small punch test method, EN 10371:2 (2021).

Google Scholar

[4] J. Chakrabarty, A theory of stretch forming over hemispherical punch heads, Int. J. Mech. Sci. 12 (1970) 315–325.

DOI: 10.1016/0020-7403(70)90085-8

Google Scholar

[5] S. P. Jeffs, R. J. Lancaster, T. E. Garcia, Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques, Mater. Sci. Eng. A, 636 (2015) 529–535.

DOI: 10.1016/j.msea.2015.03.119

Google Scholar

[6] D. Blagoeva, Y. Z. Li, R. C. Hurst, Qualification of P91 welds through Small Punch creep testing, J. Nucl. Mater. 409 (2011) 124–130.

DOI: 10.1016/j.jnucmat.2010.09.015

Google Scholar

[7] F. Monkman, N. Grant, An empirical relationship between rupture life and minimum creep rate in creep-rupture tests, Proc. ASTM. 56 (1956) 593–620.

Google Scholar

[8] B. Ule et al., Small punch test method assessment for the determination of the residual creep life of service exposed components: outcomes from an interlaboratory exercise, Nucl. Eng. Des. 192 (1999) 1–11.

DOI: 10.1016/s0029-5493(99)00039-4

Google Scholar

[9] R. J. Lancaster, W. J. Harrison, G. Norton, An analysis of small punch creep behaviour in the γ titanium aluminide Ti-45Al-2Mn-2Nb, Mater. Sci. Eng. A. 626 (2015) 263–274.

DOI: 10.1016/j.msea.2014.12.045

Google Scholar

[10] M. Abendroth, "FEM analysis of small punch tests, Key Eng. Mater. 734 (2017) 23–36.

DOI: 10.4028/www.scientific.net/kem.734.23

Google Scholar

[11] I. U. Ferdous, N. A. Alang, J. Alias, A. H. Ahmad, S. Mohd Nadzir, Rupture life and failure mechanism of Grade 91 steel under the influence of notch constraint, J. Fail. Anal. Prev. 23 (2023) 497–510.

DOI: 10.1007/s11668-022-01575-7

Google Scholar

[12] I. U. Ferdous, N. A. Alang, J. Alias, S. M. Nadzir, Numerical prediction of creep rupture life of ex-eervice and as-received Grade 91 steel at 873 K, Int. J. Automot. Mech. Eng. 18 (2021) 8845–8858.

DOI: 10.15282/ijame.18.3.2021.01.0678

Google Scholar

[13] S. Arunkumar, Overview of small punch test, Met. and Mater. Inter. 26 (2020) 719–738.

DOI: 10.1007/s12540-019-00454-5

Google Scholar

[14] K. Kimura, H. Kushima, K. Sawada, Long-term creep deformation property of modified 9Cr–1Mo steel, Mater. Sci. Eng. A. 510–511 (2009) 58–63.

DOI: 10.1016/j.msea.2008.04.095

Google Scholar

[15] L. Zhao et al., Determination of creep properties of an advanced Fe-Cr-Ni alloy using small punch creep test with a modified creep strain model, Theor. Appl. Fract. Mech. 104 (2019) 102324.

DOI: 10.1016/j.tafmec.2019.102324

Google Scholar

[16] Y. Zhang, H. Jing, L. Xu, L. Zhao, Y. Han, J. Liang, Microstructure and texture study on an advanced heat-resistant alloy during creep, Mater. Charact. 130 (2017) 56–172.

DOI: 10.1016/j.matchar.2017.05.037

Google Scholar

[17] P. Dymáček, M. Jarý, F. Dobeš, L. Kloc, Tensile and creep testing of Sanicro 25 using miniature specimens, Mater. 11 (2018) 142.

DOI: 10.3390/ma11010142

Google Scholar