Intensification of Sand Dehydration in Warehouses Using Vacuum Installations

Article Preview

Abstract:

The issue of dewatering sand, which is used in construction as an aggregate for heavy, simple, fine-grained, large-cell and silicate concrete, concrete mixtures, in the manufacture of reinforced concrete structures, in the production of asphalt and road surfaces, roofing construction materials, in the manufacture of glass, is considered. The results of experimental studies of the operation modes of the process of dewatering construction sand at drainage warehouses with the use of vacuum units are presented, depending on the time of its dewatering, the granulometric composition of the sand, and the placement scheme of special needle filter elements of the suction system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-120

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] What Is Sand. URL: https://dailycivil.com/types-of-sand-used-in-construction-works-daily-civil/ (date of access: 08.03.2024)

Google Scholar

[2] D. Beliuchenko, K. Tishechkina, T. Hannichenko, O. Salamatina, Study of humidity during sand dewatering using a cone-shaped installation. Key Engineering Materials. 953(2023)43-51.

DOI: 10.4028/p-tog6wu

Google Scholar

[3] Types of Sand used in Construction. URL: https://constrofacilitator.com/types-of-sand-used-in-construction/ (date of access: 08.03.2024)

Google Scholar

[4] O. Rybalova, S. Artemiev, M. Sarapina, B. Tsymbal, A. Bakhareva, O. Shestopalov, O. Filenko, Development of methods for estimating the environmental risk of degradation of the surface water state. Eastern-European Journal of Enterprise Technologies. 2 (10 (92)) (2018) 4–17.

DOI: 10.15587/1729-4061.2018.127829

Google Scholar

[5] S. Vambol, V. Vambol, O. Kondratenko, Y. Suchikova, O. Hurenko, Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies. 3 (10 (87)) (2017) 63–73.

DOI: 10.15587/1729-4061.2017.102314

Google Scholar

[6] B. Pospelov, E. Rybka, R. Meleshchenko, P. Borodych, S. Gornostal, Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies. 1 10–97 (2019) 29–35.

DOI: 10.15587/1729-4061.2019.155027

Google Scholar

[7] B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, N. Maksymenko, R. Meleshchenko, Y. Bezuhla, I. Hrachova, R. Nesterenko, A. Shumilova, Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies. 4 (10) (2020) 37–44.

DOI: 10.15587/1729-4061.2020.210059

Google Scholar

[8] A. Chernukha, O. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum. 1006 (2020) 70–75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[9] Sand: Sources, Classification, Properties, Tests and Substitutes | Construction. URL: https://www.engineeringenotes.com/engineering-materials-2/sand/sand-sources-classification-properties-test-and-substitutes-construction/46490 (date of access: 08.03.2024)

Google Scholar

[10] A. Vasenko, O. Rybalova, O. Kozlovskaya, A study of significant factors affecting the quality of water in the Oskil River (Ukraine). Eastern-European Journal of Enterprise Technologies. 3/10 (81) (2016) 48–55.

DOI: 10.15587/1729-4061.2016.72415

Google Scholar

[11] V. Loboichenko, A. Vasyukov, T. Tishakova, Investigations of Mineralization of Water Bodies on the Example of River Waters of Ukraine, Asian Journal of Water. Environment and Pollution. 14 (4) (2017) 37–41.

DOI: 10.3233/ajw-170035

Google Scholar

[12] V. Loboichenko, V. Strelec, The natural waters and aqueous solutions express-identification as element of determination of possible emergency situation. Water and Energy International. 61RNI (9) (2018) 43–50.

Google Scholar

[13] A.N. Pavlov, Yu.I. Gol'Tsov, L.R. Mailyan, A.S. Makh, E.M. Shcherban, Dehydration factor upon activation of building sand by ultraviolet radiation, Materials Science and Engineering. 896 (2020) 1–6.

DOI: 10.1088/1757-899x/896/1/012123

Google Scholar

[14] F. Milhomem, J. Medeiros da Luz, Modeling of Dewatering in Screens. XIII th International Mineral Processing Symposium. (2012) 893–901

Google Scholar

[15] D. Padmalal, K. Maya, River Sand Mining and Mining Methods, Sand Mining. (2014)23-30.

DOI: 10.1007/978-94-017-9144-1_3

Google Scholar

[16] O. Kondratenko, S. Vambol, O. Strokov, A. Avramenko, Mathematical model of the efficiency of diesel particulate matter filter, Naukovyi Visnyk Natsionalnoho Hirnychoho University. 6 (2015) 55–61.

Google Scholar

[17] A. Panchenko, A. Voloshina, O. Boltyansky, I. Milaeva, I. Grechka, S. Khovanskyy, M. Svynarenko, O. Glibko, M. Maksimova, N. Paranyak, Designing the flow-through parts of distribution systems for the PRG series planetary hydraulic motors. Eastern-European Journal of Enterprise Technologies. 3 (1 (93)) (2018) 67–77.

DOI: 10.15587/1729-4061.2018.132504

Google Scholar

[18] Bashynska, O., Otrosh, Y., Holodnov, O., Tomashevskyi, A., Venzhego, G. Methodology for calculating the technical state of a reinforced-concrete fragment in a building influenced by high temperature. Materials Science Forum. 1006 (2020) 166–172.

DOI: 10.4028/www.scientific.net/msf.1006.166

Google Scholar

[19] A. Pilipenko, H. Pancheva, A. Reznichenko, O. Myrgorod, N. Miroshnichenko, A. Sincheskul, The study of inhibiting structural material corrosion in water recycling systems by sodium hydroxide. Eastern-European Journal of Enterprise Technologies. 2 (1 (85)) (2017) 21–28.

DOI: 10.15587/1729-4061.2017.95989

Google Scholar

[20] G Guzii, Y Otrosh, O Guzii, A Kovalov, K Sotiriadis. Determination of the Fire-Retardant Efficiency of Magnesite Thermal Insulating Materials to Protect Metal Structures from Fire. In Materials Science Forum. 1038 (2021) 524-530.

DOI: 10.4028/www.scientific.net/msf.1038.524

Google Scholar

[21] A. Chernukha, A. Сhernukha, K. Ostapov, T. Kurska, Investigation of the Processes of Formation of a Fire Retardant Coating. Materials Science Forum. 1038 (2021) 480–485.

DOI: 10.4028/www.scientific.net/msf.1038.480

Google Scholar

[22] Andrii Kovalov, Yurii Otrosh, Oleksandr Chernenko, Maxim Zhuravskij, Marcin Anszczak. Modeling of Non-Stationary Heating of Steel Plates with Fire-Protective Coatings in Ansys under the Conditions of Hydrocarbon Fire Temperature Mode. In Materials Science Forum. 1038 (2021) 514-523.

DOI: 10.4028/www.scientific.net/msf.1038.514

Google Scholar

[23] K. Mygalenko, V. Nuyanzin, A. Zemlianskyi, A. Dominik, S. Pozdieiev, Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies. 1/10 (91) (2018) 31–37.

DOI: 10.15587/1729-4061.2018.121727

Google Scholar

[24] R. Bhatawdekar, T. Singh, E. Mohamad, R. Jha, D. Armagahni, D. Zulaika, A. Hasbollah, Best river sand mining practices vis-a-vis alternative sand making methods for sustainability, Risk. Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering. (2022) 285–313.

DOI: 10.1016/b978-0-323-85698-0.00007-1

Google Scholar

[25] A. Pham, M. Sillanpää, J. Virkutyte, Sludge dewatering by sand-drying bed coupled with electro-dewatering at various potentials. International Journal of Mining. Reclamation and Environment. (2009) 151–162.

DOI: 10.1080/17480930903132620

Google Scholar

[26] M. Preene, Techniques and developments in quarry and surface mine dewatering. Proceedings of the 18th Extractive Industry Geology Conference. (2014) 194–206.

Google Scholar

[27] B. Firth, Hydrocyclones in dewatering circuits. Minerals Engineering. 16(2) (2003) 115–120.

DOI: 10.1016/s0892-6875(02)00209-1

Google Scholar

[28] H. Susanto, H. Setyobudi, D. Faturachman, E. Yandri, A. Hendiarko, A. Daryus, V. Gaile, S. Wahono, R. Mahaswa, Analysis of the Sand Drying Process in the Biomass-Energized Rotary Drying Machine. Mechanical Engineering and Renewable Energy. 58 (2021) 93–100.

DOI: 10.53560/ppasa(58-sp1)741

Google Scholar

[29] B. Ioan, A.  Soica, R.  Itu, Dewatering of waters from surface quarries in the Oltenia basin with the help of horizontal drilling. MATEC Web of Conferences. (2022) 1–8.

DOI: 10.1051/matecconf/202237300069

Google Scholar

[30] Solving the Biggest Issues with Washing and Dewatering Sand. URL: https://www.agg-net.com/resources/articles/materials-processing/solving-the-biggest-issues-with-washing-and-dewatering-sand

Google Scholar

[31] F. Wang1, Y Gao, X Zhou, Y Lv, X. Xu, Study on the actual case of deep excavation in sands and pebble with plenty water. MATEC Web of Conferences. (2019) 1–7.

DOI: 10.1051/matecconf/201927703015

Google Scholar

[32] M. Xiaolei, H. Shuigen, W. Wansheng, Effect of silt content in filling sand on the geotubes dewatering performance by hanging bag tests. Journal of Measurements in Engineering. 8 (2020) 132–141.

DOI: 10.21595/jme.2020.21645

Google Scholar

[33] D. Dubinin et al., Investigation of the effect of carbon monoxide on people in case of fire in a building. Testing action ugličnog monoxide on people in case fire in the building Safety. 62(4) (2020) 347–357.

DOI: 10.31306/s.62.4.2

Google Scholar