Study of the Accuracy of the Temperature Fire Measurement by the Sensors of the Fire Alarms in Dynamic Conditions with Random Temperature Fluctuations

Article Preview

Abstract:

The results study of the accuracy of the temperature fire measurement by the sensors of the fire alarms in dynamic conditions with random temperature fluctuations, are presented. The statistical study of the accuracy measurement is based on the method of transformation of the random processes by the linear systems. The constructive approaches to optimizing and the accuracy improvement of the thermal sensors with the thermo-resistant sensitive element and the bridge measuring circuit in the dynamic conditions under random temperature fluctuations based on the choice of corresponding values of the characteristic parameter of the sensor and the constant time of its sensitive element have been proposed. Scientific novelty of the results is in the development model and in the method of analysis of the dynamic model of the thermal sensors with the thermo-resistant sensitive element in the form of a thin plate. It has been proved that the invariance of the accuracy of the ambient temperature measurement over time is possible. The obtained results allow solving the practical tasks determining the optimal parameters of the sensors under the conditions of fire temperature dynamics, taking into account the background random temperature fluctuations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-141

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Sadkovyi, B. Pospelov, E. Rybka, B. Kreminskyi, O. Yashchenko, Y. Bezuhla, E. Darmofal, E. Kochanov, S. Hryshko, I. Kozynska, Development of a method for assessing the reliability of fire detection in premises. Eastern-European Journal of Enterprise Technologies. 3 (10 (117)) (2022) 56–62

DOI: 10.15587/1729-4061.2022.259493

Google Scholar

[2] B. Pospelov, V. Andronov, E. Rybka, Y. Bezuhla, O. Liashevska, T. Butenko, E. Darmofal, S. Hryshko, I. Kozynska, Y. Bielashov, Empirical cumulative distribution function of the characteristic sign of the gas environment during fire. Eastern-European Journal of Enterprise Technologies. 4 (10 (118)) (2022) 60–66

DOI: 10.15587/1729-4061.2022.263194

Google Scholar

[3] B. Pospelov, E. Rybka, A. Savchenko, O. Dashkovska, S. Harbuz, E. Naden, I. Chornomaz, S. Hryshko, O. Nepsha, Peculiarities of amplitude spectra of the third order for the early detection of indoor fires. Eastern-European Journal of Enterprise Technologies. 5/10 (119) (2022) 49–56

DOI: 10.15587/1729-4061.2022.265781

Google Scholar

[4] B. Pospelov, E. Rybka, R. Meleshchenko, D. Polkovnychenko, R. Korniienko, Experimental Study of Combustion Characteristics of Typical Material in a Non-Hermetic Room. Defect and Diffusion Forum. 438 (2025) 131–138

DOI: 10.4028/p-f5i2NU

Google Scholar

[5] A. Poulsen, G. Jomaas, Experimental study on the burning behavior of pool fres in rooms with different wall linings. Fire Technology. 48 (2012) 419–439.

DOI: 10.1007/s10694-011-0230-0

Google Scholar

[6] O. Popov, A. Iatsyshyn, V. Kovach, A. Iatsyshyn, I. Neklonskyi, A. Zakora, Is here a Future for Small Modular Reactors in Ukraine? Comparative Analysis with Large Capacity Reactors. Systems, Decision and Control in Energy V. Studies in Systems, Decision and Control. 481 (2023) 453–469

DOI: 10.1007/978-3-031-35088-7_24

Google Scholar

[7] O. Popov, T. Ivaschenko, L. Markina, T. Yatsyshyn, A. Iatsyshyn, O. Lytvynenko, Peculiarities of Specialized Software Tools Used for Consequences Assessment of Accidents at Chemically Hazardous Facilities. Systems, Decision and Control in Energy V. Studies in Systems, Decision and Control. 481 (2023) 779–798

DOI: 10.1007/978-3-031-35088-7_45

Google Scholar

[8] B. Pospelov, E. Rybka, O. Krainiukov, O.  Yashchenko, Y. Bezuhla, S. Bielai, E. Kochanov, S. Hryshko, E. Poltavski, O. Nepsha, Short-term forecast of fire in the premises based on modification of the Brown's zero-order model. Eastern-European Journal of Enterprise Technologies. 4/10 (112) (2021) 52–58

DOI: 10.15587/1729-4061.2021.238555

Google Scholar

[9] B. Pospelov, E. Rybka, R. Meleshchenko, O. Krainiukov, I. Biryukov, T. Butenko, O. Yashchenko, Yu. Bezuhla, K. Karpets, R. Vasylchenko, Short-term fire forecast based on air state gain recurrency and zero-order Brown model. Eastern-European Journal of Enterprise, 3/10 (111) (2021) 27–33

DOI: 10.15587/1729-4061.2021.233606

Google Scholar

[10] B. Pospelov, E. Rybka, O. Krainiukov, V. Fedyna, Y. Bezuhla, A. Melnychenko, P. Borodych, S. Hryshko, S. Manzhura, O. Yesipova, Method for early ignition detection based on the sampling dispersion of dangerous parameter. Eastern-European Journal of Enterprise Technologies. 1/10 (127) (2024) 55–63

DOI: 10.15587/1729-4061.2024.299001

Google Scholar

[11] U. Oppelt Improvement on fire detectors by using multiple sensors. Fire & Safety. 2006. http://www.securitysa.com/default.aspx?pklissueid=550.

Google Scholar

[12] Y. Otrosh, Y. Rybka, O. Danilin, M. Zhuravskyi, Assessment of the technical state and the possibility of its control for the further safe operation of building structures of mining facilities. E3S Web of Conferences. 123 (2019) 01012

DOI: 10.1051/e3sconf/201912301012

Google Scholar

[13] V. Andronov, B. Pospelov, E. Rybka, Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects. Eastern–European Journal of Enterprise Technologies. 4/5 (82) (2016) 38–44

DOI: 10.15587/1729-4061.2016.75063

Google Scholar

[14] Q. Ding, Z. Peng, T. Liu, Q. Tong, Multi-sensor building fire alarm system with information fusion technology based on D–S evidence theory. Algorithms. 7 (2014) 523–537.

DOI: 10.3390/a7040523

Google Scholar

[15] V. Andronov, B. Pospelov, E. Rybka, Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies. 2 (9 (86)) (2017) 32–37

DOI: 10.15587/1729-4061.2017.96694

Google Scholar

[16] V. Andronov, B. Pospelov, E. Rybka, S. Skliarov, Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies. 3 (9 (87)) (2017) 53–59

DOI: 10.15587/1729-4061.2017.101985

Google Scholar

[17] L.A. Cestari, C. Worrell, J.A. Milke, Advanced Fire Detection Algorithms using Data from the Home Smoke Detector Project, Fire Safety Journal, 40/1 (2005) 1–28.

DOI: 10.1016/j.firesaf.2004.07.004

Google Scholar

[18] B. Pospelov, V. Andronov, E. Rybka, L. Chubko, Y. Bezuhla, S. Gordiichuk, T. Lutsenko, N. Suriadna, S. Hryshko, T. Kushchova, Revealing the peculiarities of average bicoherence of frequencies in the spectra of dangerous parameters of the gas environment during fire. Eastern-European Journal of Enterprise Technologies. 1/10 (121) (2023) 46–54

DOI: 10.15587/1729-4061.2023.272949

Google Scholar

[19] P. Radonja, S. Stankovic, Generalized Profile Function Model Based on Neural Networks. Serbian Journal of Electrical Engineering. 6(2) (2009) 285–298.

DOI: 10.2298/sjee0902285r

Google Scholar

[20] Y. C. Tsai, The design and implementation of early fire detection and hierarchical evacuation alarm system, master thesis. Graduate Institute of Networking and Communication Engineering. Taiwan. (2007).

Google Scholar

[21] D. Jovan, B. Dragana, Decision algorithms in fire detection systems. Serbian Journal of Electrical Engineering. 8/2 (2011) 155–161.

Google Scholar

[22] O. Willstrand, J. Brandt, R. Svensson, Detection of fires in the toilet compartment and driver sleeping compartment of buses and coaches – Installation considerations based on full scale tests. Case Studies in Fire Safety. 5 (2016) 1–10.

DOI: 10.1016/j.csfs.2015.11.002

Google Scholar

[23] W. Zheng, X. Zhang, Z. Wang, Experiment study of performances of fire detection and fire extinguishing systems in a subway train. Procedia Engineering. 135 (2016) 393–402.

DOI: 10.1016/j.proeng.2016.01.147

Google Scholar

[24] B. Pospelov, E. Rybka, M. Samoilov, I. Morozov, Y. Bezuhla, T. Butenko, Y. Mykhailovska, O. Bondarenko, J. Veretennikova, Defining the features of amplitude and phase spectra of dangerous factors of gas medium during the ignition of materials in the premises. EEJET. 2/10 (116) (2022) 57–65

DOI: 10.15587/1729-4061.2022.254500

Google Scholar

[25] V.S. Polishhuk Izmeritel'nye preobrazovateli. Vishha shkola. (1981) 296.

Google Scholar

[26] Je.M. Kartashov Analiticheskie metody v teorii teploprovodnosti tverdyh tel. Vysshaja shkola. (2001) 550.

Google Scholar