Microstructural Aspects of Ceramic-Metal Composites Performance in Erosive Media

Article Preview

Abstract:

Solid particle erosion tests were conducted on WC-, TiC-, and Cr3C2 - based ceramicmetal composites (cermets) to study their performance in erosive media. The overall objectives of this study are: (i) to improve our current understanding with regards to the influence of intrinsic properties on wear behavior of cermets, (ii) to estimate an influence of metallurgical features during cermets fabrication on resistance to fracture; (iii) to consider micromechanical aspects of cermets durability; and (iiii) to offer the criteria of material reliability in different erosive conditions. For this reasons, microstructure of multiphase materials, fracture mechanisms, ability of energy dissipation and thermo-mechanical parameters and erosion resistance were analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

132-141

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Hussainova: Wear Vol. 258, 1 - 4 (2005), p.357.

Google Scholar

[2] J. Kubarsepp, H. Klaasen, J. Pirso: Wear Vol. 249 (2001), p.229.

Google Scholar

[3] I. Hussainova, J. Kubarsepp, J. Pirso: Wear Vol. 250 (2001), p.818.

DOI: 10.1016/s0043-1648(01)00737-2

Google Scholar

[4] J. Meng, J. Lu, J. Wang, S. Yang: Mater. Sci. Eng. A Vol. 418 (2006), p.68.

Google Scholar

[5] J. Pirso, M. Viljus, S. Letunovits, K. Juhani: Int. J. Refractory Met. & Hard Mater. Vol. 24 (2006), p.263.

DOI: 10.1016/j.ijrmhm.2005.06.002

Google Scholar

[6] I. Hussainova, M. Antonov: Proc. Estonian Acad. Sci. Eng. Vol. 9, N. 4 (2003), p.261.

Google Scholar

[7] I. Hutchings: Eng. Materials Vols. 71 (1992), p.75.

Google Scholar

[8] G. D'Errico, S. Bugliosi, D. Cuppini, and E. Guglielmi: Wear Vol. 203-204 (1997), p.242.

DOI: 10.1016/s0043-1648(96)07397-8

Google Scholar

[9] B. Levin, J. DuPont, A. Marder: Wear Vol. 238 (2000) p.160.

Google Scholar

[10] A. Ball, Z. Feng: Wear Vol. 233-235 (1999), p.674.

Google Scholar

[11] A. Ball, A. Patetson: Proc. Int. Conference on Recent Developments in Steel and Hardmetals, 1985, 377-391, Island.

Google Scholar

[12] I. Hussainova: Wear Vol. 255 (2003), p.121.

Google Scholar

[13] I. Hussainova, K-P. Schade, S. Tisler: Proc. Estonian Acad. Sci. Eng., Vol. 12, 1 (2006), p.26.

Google Scholar

[14] A. Evans, M Golden, M. Rosenblatt: Proc. Roy. Soc. London Ser., Vol. A361 (1978), p.343.

Google Scholar

[15] H.O. Pierson: Handbook of refractory carbides and nitrides (Noyes Publications, USA 1996).

Google Scholar

[16] U. Rolander, H-O. Andren: Mater. Sci. Eng. A, Vol. 105/106 (1988), p.283.

Google Scholar

[17] R.M. Brach: Int. J. Impact Eng. Vol. 7 /1 (1988), pp.37-200, 1 0, 15 0, 2 0, 25 0, 3 0, 35 0, 4 0, 45 NORMALIZED ENERGY ABSORBED EROSION RATE, mm3/kg Impact angle 30 Impact angle 90.

Google Scholar