Microstructures and Interfaces in Melt-Growth Al2O3-Ln2O3 Based Eutectic Composites

Article Preview

Abstract:

Directionally solidified oxide eutectic ceramics were prepared from Al2O3, Ln2O3 and ZrO2 based binary or ternary systems. Their microstructures consist of continuous networks of single-crystal Al2O3 and oxide compounds (LnAlO3, Ln3Al5O12) which interpenetrate without grain boundaries. The outstanding stability of these microstructures gives rise to a high strength and creep resistance at high temperature. Influence of growth conditions on the morphology of the as-obtained microstructures was studied. Preferred growth directions, orientation relationships between phases and single-crystal homogeneity of specimen were revealed. Low residual stresses were measured in the binary eutectics and fracture toughness at room temperature was improved by the addition of zirconia at a eutectic composition in ternary systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1377-1384

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.J.S. Cooksay, D. Munson, M.P. Wilkinson, A.H. Hellawell, Phil. Mag., 10 (1964) 745.

Google Scholar

[2] J. D Hunt and K.A. Jackson, Trans AIME, 236, ( 1966) 843.

Google Scholar

[3] W.J. Minford, R.C. Bradt, V.S. Stubican, J. Am. Ceram. Soc., 62 (1979) 154.

Google Scholar

[4] Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu & Y. Kohtoku. Nature, 389, (1997) 49.

DOI: 10.1038/37937

Google Scholar

[5] Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu & Y. Kohtoku., J. Mater. Sci. 33, (1998) 1217.

DOI: 10.1023/a:1004486303958

Google Scholar

[6] N. Nakagawa, H. Ohtsubo, A. Mitani, K. Shimizu, Y. Waku, J. Eur. Ceram. Soc 25, (2005) 1251.

Google Scholar

[7] A. Revcolevschi, Rev. Int. Hautes Temp. Refract., 7, (1970) 73.

Google Scholar

[8] A.G. Evans, E. Charles, J. Am. Ceram. Soc. 59, (1976) 371.

Google Scholar

[9] J.Y. Pastor, J. Llorca, A. Salazar, P.B. Oliete, I. de Francisco, J.I. Pena J. Am. Ceram. Soc. 88, (2005) 1488.

Google Scholar

[10] Y. Waku, S. Sakata, A. Mitani, K. Shimizu, J. Mat. Sci., 37, (2002) 2975.

Google Scholar

[11] S.M. Lakiza, O. Fabrichnaya, Ch. Wang, M. Zinchevich, F. Aldinger, J. Eur. Ceram. Soc 26, (2006) 233.

Google Scholar

[12] L. Mazerolles, D. Michel and R. Portier, J. Am. Ceram. Soc, 69, (1986) 252.

Google Scholar

[13] A. Revcolevschi, G. Dalhenne and D. Michel External and internal interfaces of metal oxides, Materials Science Forum, Trans. Tech. Publications, (1988) pp.173-197.

Google Scholar

[14] L. Mazerolles, D. Michel, M.J. Hÿtch, J. Eur. Ceram. Soc, 25, (2005) 1389.

Google Scholar

[15] C.S. Frazer, E.C. Dickey, A Sayir, Journal of crystal growth, 233, (2001) 187.

Google Scholar

[16] E.C. Dickey, V.P. Dravid, C.R. Hubbard, J. Am. Ceram. Soc. 80, (1997) 2273.

Google Scholar

[17] G. Gouadec, Ph Colomban, N. Piquet, M.F. Trichet, L. Mazerolles, J. Eur. Ceram. Soc 25, (2005)1447.

Google Scholar

[18] C.O. Hulse and J.A. Batt, Final Tech. Rpt. UARL-N910803- 10, May 1974, NTIS AD781995/6GA.

Google Scholar

[19] J. Echigoya, Y. Takabayashi, H.J. Suto. Mat. Sci. Lett 5, (1986) 153.

Google Scholar