[1]
M.L. Bleiberg, R.M. Berman, and B. Lustman: Effects of High Burn-up on Oxide Ceramic Fuels, Symposium on Radiation Damage in Solids and Reactor Materials, International Atomic Energy Agency, Fondazione CINI, S. Giorgio Maggiore, Venice, May 7-11, (1962).
Google Scholar
[2]
D. Baron: Porosity Buildup in the Fuel Periphery at High Burnup, HBEP Steering Committee Meeting, Wengen, Switzerland, June (1986).
Google Scholar
[3]
J.O. Barner, M.E. Cunningham, M.D. Freshley, and D.D. Lanning: High Burnup Effects Program - Final Report, HBEP-61, 1990, Battelle Pacific Northwest Laboratories.
DOI: 10.2172/5876135
Google Scholar
[4]
S.R. Pati, A.M. Garde: Fission Gas Release from PWR fuel Rods at Extended Burnups, ANS Topical meeting on LWR Fuel Performance, Orlando, Florida, April 21-24, (1985).
Google Scholar
[5]
S. Koizumi, H. Umehara, and Y. Wakashima: Proc. IAEA Technical Committee Meeting on Fuel Performance at High Burnup for Water Reactors, Nykoping (1990) p.102.
Google Scholar
[6]
I.L.F. Ray, Hj. Matzke, H.A. Thiele, M. Kinoshita: J Nulc. Mater. 245 (1997) p.115.
Google Scholar
[7]
Hj. Matzke: J. Nucl. Mater. 189 (1992) p.141.
Google Scholar
[8]
Hj. Matzke, M. Kinoshita: J. Nucl. Mater. 247 (1997)p.108.
Google Scholar
[9]
M. Kinoshita, T. Sonoda, S. Kitajima, A. Sasahara, T. Kameyama, T. Matsumura, E. Kolstad, V.V. Rondinella, C. Ronchi, J. -P. Hiernaut, T. Wiss, F. Kinnart, J. Ejton, D. Papaioannou, Hj. Matzke: Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, September 19-22 (2004).
Google Scholar
[10]
Institute for Transuranium Elements, Annual Report 1992, EUR 15154EN, page 121, Fig. 4. 35, permission of use obtained by courtesy of ITU.
Google Scholar
[11]
L.E. Thomas, .C.E. Beyer, L.A. Charlot: J. Nucl. Mater. Vol. 188 (1992) p.80, Fig. 7(b).
Google Scholar
[12]
I.L.F. Ray, H. Thiele, Hj. Matzke: J. Nucl. Mater, 188 (1992) pp.90-93, Fig. 5.
Google Scholar
[13]
Hj. Matzke, L.M. Wang: J. Nucl. Mater. 231 (1996) p.155.
Google Scholar
[14]
T. Sonoda, M. Kinoshita, I.L.F. Ray, T. Wiss, H. Thiele, D. Pellottiero, V.V. Rondinella, Hj. Matzke: Nucl. Instr. Meth. Phys. Res. B191 (2002) 622-628.
Google Scholar
[15]
K. Nogita, K. Une: Nucl. Instr. Meth. Phys. Res. B 91(1994) p.301.
Google Scholar
[16]
K. Yasunaga, K. Yasuda, S. Matsumura and T. Sonoda: Nucl. Instr. and Meth. B (2006) in press.
Google Scholar
[17]
T. Sonoda, M. Kinoshita, Y. Chimi, N. Ishikawa, M. Sataka, A. Iwase: Nucl. Instr. Meth. B (2006), in press.
Google Scholar
[18]
G. Kresse and J. Furthmüller: Physical Review B, 54 (1996) p.11169.
Google Scholar
[19]
J.D. Gale and A.L. Rohl: Mol. Simul., 29 (2003) p.291.
Google Scholar
[20]
K. Yamada, K. Kurosaki, M. Uno, S. Yamanaka: J. Alloys. Comp. 307 (2000) p.10.
Google Scholar
[21]
C. B. Basak, A. K. Sengupta, and H. S. Kamath: J. Alloys. Comp. 360 (2003) p.210.
Google Scholar
[22]
H. M. Naguib, R. Kelly: Recent Advances in Science and Technology of Materials, Ed. A. Bishay, Plenum Publ. Corp. New York 1 (1974) pp.321-336.
Google Scholar
[23]
H. Blank, Hj. Matzke: Radiation Effects 17 (1973) p.57.
Google Scholar
[24]
T. Kirihara: Journal of Atomic Energy Society Japan, Nuclear Fuel Performance and Radiation Enhanced Diffusion, Vol. 20, No. 9 (1978) p.633 (in Japanese).
Google Scholar
[25]
G. Martin, P. Bellon: Soild State Physics, Vol. 50 (1997) p.189.
Google Scholar