Restructuring of Nuclear Oxide Fuel under High Burnup Irradiation

Article Preview

Abstract:

The ceramics fuel of UO2, irradiated in power reactors, has restructuring at high burnup, around 70MWd/kgU, which is near in the scope of future fuel utilization with improving economy. The original grains are divided into sub-grains of 100 nm scale and segregation of fission gas (Xe, Kr) grows bubbles resulting in volumetric swelling of the fuel. This restructuring was investigated in the field of nuclear engineering of power reactor fuel industry. This presentation briefly provides observations of this restructuring and some of engineering consequences. In a mechanism study a new approach, combing accelerator irradiation and computational science has been started and some of initial results are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1952-1960

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.L. Bleiberg, R.M. Berman, and B. Lustman: Effects of High Burn-up on Oxide Ceramic Fuels, Symposium on Radiation Damage in Solids and Reactor Materials, International Atomic Energy Agency, Fondazione CINI, S. Giorgio Maggiore, Venice, May 7-11, (1962).

Google Scholar

[2] D. Baron: Porosity Buildup in the Fuel Periphery at High Burnup, HBEP Steering Committee Meeting, Wengen, Switzerland, June (1986).

Google Scholar

[3] J.O. Barner, M.E. Cunningham, M.D. Freshley, and D.D. Lanning: High Burnup Effects Program - Final Report, HBEP-61, 1990, Battelle Pacific Northwest Laboratories.

DOI: 10.2172/5876135

Google Scholar

[4] S.R. Pati, A.M. Garde: Fission Gas Release from PWR fuel Rods at Extended Burnups, ANS Topical meeting on LWR Fuel Performance, Orlando, Florida, April 21-24, (1985).

Google Scholar

[5] S. Koizumi, H. Umehara, and Y. Wakashima: Proc. IAEA Technical Committee Meeting on Fuel Performance at High Burnup for Water Reactors, Nykoping (1990) p.102.

Google Scholar

[6] I.L.F. Ray, Hj. Matzke, H.A. Thiele, M. Kinoshita: J Nulc. Mater. 245 (1997) p.115.

Google Scholar

[7] Hj. Matzke: J. Nucl. Mater. 189 (1992) p.141.

Google Scholar

[8] Hj. Matzke, M. Kinoshita: J. Nucl. Mater. 247 (1997)p.108.

Google Scholar

[9] M. Kinoshita, T. Sonoda, S. Kitajima, A. Sasahara, T. Kameyama, T. Matsumura, E. Kolstad, V.V. Rondinella, C. Ronchi, J. -P. Hiernaut, T. Wiss, F. Kinnart, J. Ejton, D. Papaioannou, Hj. Matzke: Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, September 19-22 (2004).

Google Scholar

[10] Institute for Transuranium Elements, Annual Report 1992, EUR 15154EN, page 121, Fig. 4. 35, permission of use obtained by courtesy of ITU.

Google Scholar

[11] L.E. Thomas, .C.E. Beyer, L.A. Charlot: J. Nucl. Mater. Vol. 188 (1992) p.80, Fig. 7(b).

Google Scholar

[12] I.L.F. Ray, H. Thiele, Hj. Matzke: J. Nucl. Mater, 188 (1992) pp.90-93, Fig. 5.

Google Scholar

[13] Hj. Matzke, L.M. Wang: J. Nucl. Mater. 231 (1996) p.155.

Google Scholar

[14] T. Sonoda, M. Kinoshita, I.L.F. Ray, T. Wiss, H. Thiele, D. Pellottiero, V.V. Rondinella, Hj. Matzke: Nucl. Instr. Meth. Phys. Res. B191 (2002) 622-628.

Google Scholar

[15] K. Nogita, K. Une: Nucl. Instr. Meth. Phys. Res. B 91(1994) p.301.

Google Scholar

[16] K. Yasunaga, K. Yasuda, S. Matsumura and T. Sonoda: Nucl. Instr. and Meth. B (2006) in press.

Google Scholar

[17] T. Sonoda, M. Kinoshita, Y. Chimi, N. Ishikawa, M. Sataka, A. Iwase: Nucl. Instr. Meth. B (2006), in press.

Google Scholar

[18] G. Kresse and J. Furthmüller: Physical Review B, 54 (1996) p.11169.

Google Scholar

[19] J.D. Gale and A.L. Rohl: Mol. Simul., 29 (2003) p.291.

Google Scholar

[20] K. Yamada, K. Kurosaki, M. Uno, S. Yamanaka: J. Alloys. Comp. 307 (2000) p.10.

Google Scholar

[21] C. B. Basak, A. K. Sengupta, and H. S. Kamath: J. Alloys. Comp. 360 (2003) p.210.

Google Scholar

[22] H. M. Naguib, R. Kelly: Recent Advances in Science and Technology of Materials, Ed. A. Bishay, Plenum Publ. Corp. New York 1 (1974) pp.321-336.

Google Scholar

[23] H. Blank, Hj. Matzke: Radiation Effects 17 (1973) p.57.

Google Scholar

[24] T. Kirihara: Journal of Atomic Energy Society Japan, Nuclear Fuel Performance and Radiation Enhanced Diffusion, Vol. 20, No. 9 (1978) p.633 (in Japanese).

Google Scholar

[25] G. Martin, P. Bellon: Soild State Physics, Vol. 50 (1997) p.189.

Google Scholar