Radiation Damage Effects in Insulators for Fusion Reactors: Microstructure Evolution in MgO-Al2O3 System Oxide Crystals

Article Preview

Abstract:

Characteristic features of radiation damage in insulators for fusion reactors are that those materials are exposed to synergistic radiation damage of elastic displacements and electric excitation with the presence of an electric field. This paper describes the nucleation-and-growth of radiation-induced defects and their stability in oxide ceramics, such as magnesium-aluminate spinel (MgAl2O4) and alpha-alumina (α-Al2O3). Microstructure evolution in these oxides is shown through transmission electron microscopy for the formation process of dislocation loops under synergistic irradiation with displacements and ionizing radiation, the stability of dislocation loops, and the nucleation-and-growth process of loops with an applied electric field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1961-1968

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Shikama, K. Yasuda, S. Yamamoto, C. Kinoshita, S.J. Zinkle and E.R. Hodgson: J. Nucl. Mater. Vol. 271&272 (1998), p.560.

Google Scholar

[2] S. Yamamoto, T. Shikama, V. Belyakov, E. Farnum, E.R. Hodgson, T. Nishitani, D. Orlinski, S. Zinkle, S. Kasai, P.E. Stott, K. Young, V. Zavariev, A. Costley, L. de Kock, C. Walker, G. Janeschitz: J. Nucl. Mater. Vol. 283-287 (2000), p.60.

DOI: 10.1016/s0022-3115(00)00157-4

Google Scholar

[3] A. Ibarra and E.R. Hodgson: Nucl. Instr. and Meth. B Vol. 218 (2004), p.29.

Google Scholar

[4] M. Decreton, T. Shikama and E.R. Hodgson: J. Nucl. Mater. Vol. 329-333 (2004), p.125.

Google Scholar

[5] C. Kinoshita, Y. Isobe, H. Abe, Y. Denda and T. Sonoda: J. Nucl. Mater. Vol. 206 (1993), p.341.

Google Scholar

[6] E.A. Kotomin and A.I. Popov: Nucl. Instr. and Meth. B Vol. 141 (1998), p.1.

Google Scholar

[7] S.J. Zinkle: Nucl. Instr. and Meth. B Vol. 91 (1994), p.234.

Google Scholar

[8] S.J. Zinkle: Mat. Res. Soc. Symp. Proc. Vol. 439 (1997), p.667.

Google Scholar

[9] K. Yasuda, C. Kinoshita, R. Morisaki and H. Abe: Philos. Mag. A Vol. 78 (1998), p.583.

Google Scholar

[10] K. Yasuda, C. Kinoshita, M. Ohmura and H. Abe: Nucl. Instr. and Meth. B Vol. 166-167 (2000), p.107.

Google Scholar

[11] K. Yasuda and C. Kinoshita: Nucl. Instr. and Meth. B Vol. 191 (2002), p.559.

Google Scholar

[12] K. Yasuda, C. Kinoshita and S. Matsumura: Defect and Diffusion Forum Vol. 206&207 (2002), p.53.

Google Scholar

[13] K. Yasuda, C. Kinoshita, K. Fukuda and F.A. Garner: J. Nucl. Mater. Vol. 283-287 (2000), p.937.

Google Scholar

[14] K. Yasuda, T. Higuchi, K. Shimada, C. Kinoshita, K. Tanaka and M. Kutsuwada: Philos. Mag. Lett. Vol. 83 (2003), p.21.

Google Scholar

[15] T. Higuchi, K. Yasuda, K. Shiiyama, M. Kutsuwada and C. Kinoshita: Nucl. Instr. and Meth. B Vol. 206 (2003), p.103.

Google Scholar

[16] S.J. Zinkle and C. Kinoshita: J. Nucl. Mater. Vol. 251 (1997), p.200.

Google Scholar

[17] K. Yasuda, unpublished work.

Google Scholar

[18] K. Nakai, K. Fukumoto, C. Kinoshita: J. Nucl. Mater. Vol. 191-194 (1992), p.63.

Google Scholar