Ferromagnetic Homogeneous Polycrystalline Zn1-xCoxO Oxides

Article Preview

Abstract:

In this work, the structural and magnetic properties of polycrystalline Zn1-xCoxO (x = 0, 0.02, 0.05, 0.0625, 0.10 and 0.15) oxides were studied in detail. Rietveld refinement of x-ray diffraction spectra indicates that a single-phase wurtzite structure was formed in Zn1-xCoxO samples for x up to 0.10. The magnetization for x = 0.02 can be fitted to a model with a paramagnetic Curie term and a diamagnetic constant which could arise from spins of isolated free Co ions and a diamagnetic background, respectively. For x > 0.02, however, an additional antiferromagnetic Curie-Weiss term needs to employ for fitting. This is due to an additional contribution from clustered Co ions that are in nearest neighbor positions through oxygen ions. Results show that the substitution of Co at the Zn site does not occur in a completely random manner but Co ions appear to have a tendency for clustering. In addition, the homogenous ZnO:Co thin film prepared by Pulsed Laser Deposition on SiO2/Si substrate shows ferromagnetic behavior at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2520-2527

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.K. Furdyna: J. Appl. Phys. Vol. 64 (1988), p. R29.

Google Scholar

[2] H. Ohno: Science Vol. 281 (1998), p.951.

Google Scholar

[3] S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, and L.A. Boatner: J. Appl. Phys. Vol. 93 (2003), p.1.

DOI: 10.1063/1.1517164

Google Scholar

[4] K. Sato and H. Katayama-Yoshida: Jap. J. Appl. Phys. Vol. 39 (2000), p. L555.

Google Scholar

[5] K. Sato and H. Katayama-Yoshida, Jap. J. Appl. Phys. Vol. 40 (2001), p. L334.

Google Scholar

[6] K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79 (2001), p.988.

Google Scholar

[7] S. -W. Lim, D. -K. Hwang, and J. -M. Myoung, Solid State Commun. 125 (2001), p.988.

Google Scholar

[8] Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y.Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett. 78 (2001), p.3824.

DOI: 10.1063/1.1377856

Google Scholar

[9] J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, and Y.M. Kim, Appl. Phys. Lett. 84, 1338 (2004).

Google Scholar

[10] J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, and W.K. Choo, Physica B 327 (2003), p.304.

Google Scholar

[11] A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, and R. Seshadri, Phys. Rev. B 68 (2003), p.205202.

Google Scholar

[12] R.D. Shannon and C.T. Prewitt, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 925 (1969); R.D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32 (1976), p.751.

DOI: 10.1107/s0567739476001551

Google Scholar

[13] Y.B. Zhang, S. Li, T.T. Tan, and H.S. Park, Solid State Commun. Solid State Communications 137 (2006), p.142.

Google Scholar

[14] S. Kolesnik, B. Dabrowski, and J. Mais, J. Supercond. 15 (2002), p.251.

Google Scholar

[15] G. Lawes, A.S. Risbud, A.P. Ramirez, and R. Seshadri, Phys. Rev. B 71 (2005), p.045201.

Google Scholar

[16] J. Spalek, A. Lewicki, Z. Tarnawski, J.K. Furdyna, R.R. Galazka, and Z. Obuszko, Phys. Rev. B 33 (1986), p.3407.

DOI: 10.1103/physrevb.33.3407

Google Scholar

[17] S.W. Yoon, S. -B. Cho, S.C. We, S. Yoon, B.J. Suh, H.K. Song, and Y.J. Shin, J. Appl. Phys. 93 (2003), p.7879.

Google Scholar

[18] J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, and W.K. Choo, J. Appl. Phys. 92 (2002), p.6066.

Google Scholar

[19] C.N.R. Rao and F.L. Deepak, J. Mater. Chem. 15 (2005), p.573.

Google Scholar

[20] N.W. Ashcroft and N. David Mermin, Solid State Physics (Harcourt Brace College Publishers, Orlando, 1976), p.658.

Google Scholar

[21] M.H. Kane, K. Shalini, C.J. Summers, R. Varatharajan, J. Nause, C.R. Vestal, Z.J. Zhang, and I.T. Ferguson, J. Appl. Phys. 97 (2005), p.023906.

DOI: 10.1063/1.1830084

Google Scholar

[22] M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, and J.M.D. Coey, Phys. Rev. Lett. 93 (2004), p.177206.

Google Scholar

[23] H.J. Lee, S.Y. Jeong, C.R. Cho, and C.H. Park, Appl. Phys. Lett. 81 (2002), p.4020.

Google Scholar

[24] J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, in Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain and R.C. King, Jr. (Physical Electronics Inc., 1995), p.82.

Google Scholar