Recent Advances in Pyroelectric Ceramics and Thin Films for Applications in Uncooled Infra-Red Sensor Arrays

Article Preview

Abstract:

Pyroelectric infra-red detector arrays provide an attractive solution to the problem of collecting spatial information on the IR distribution in a scene. They have the property that they are only sensitive to changes in the IR flux. This means that they are particularly-well suited to the monitoring of movements of people in applications such as retail outlets and in safety and healthcare applications. The applications of low cost arrays with limited (few hundred elements) for people sensing and imaging radiometry will be illustrated. The performances and costs of uncooled pyroelectric arrays are ultimately driven by the materials used. For this reason, continuous improvements in materials technology are important. In the area of bulk ceramics, it is possible to obtain significant improvements in both production costs and performance though the use of tape-cast, functionally-gradient materials. The use of directly-deposited ferroelectric thin films on silicon ASIC’s is offering considerable potential for low cost high performance pyroelectric arrays. The challenges involved in developing such materials will be discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2503-2513

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.W. Whatmore, Rep. Prog. Phys. 49, 1335 (1986).

Google Scholar

[2] R. Watton, Ferroelectrics, 91, 87 (1989).

Google Scholar

[3] R. Watton, P.N. Dennis, J.P. Gillham, P.A. Manning, M.C. Perkins and M.A. Todd, Proc. SPIE, 2020, 379 (1993).

Google Scholar

[4] R. Blackwell, S. Geldart, M. Kohin, A. Leary and R. Murphy, Proc. SPIE, 5406, 422 (2004).

Google Scholar

[5] WWW. IRISYS. co. uk.

Google Scholar

[6] A. Sixsmith, N Johnson and R.W. Whatmore J. de Physique, 128, 153 (2005).

Google Scholar

[7] R.W. Whatmore and F.W. Ainger Proc. SPIE, 395, 261 (1983).

Google Scholar

[8] R.W. Whatmore and A.J. Bell Ferroelectrics, 35, 155 (1983).

Google Scholar

[9] C.P. Shaw, S. Gupta, S.B. Stringfellow, A. Navarro, J.R. Alcock and R.W. Whatmore , J. European Ceram. Soc., 22, 2123 (2002).

Google Scholar

[10] M. Nakamoto, N. Ichinose, N. Iwase and Y. Yamashita, J. Ceram. Soc. Jpn., 110, 639 (2002).

Google Scholar

[11] R. Clarke, A.M. Glazer, F.W. Ainger, D. Appleby, N.J. Poole, & S.G. Porter, Ferroelectrics, 11, 359 (1976).

Google Scholar

[12] R.W. Whatmore, Ferroelectrics, 49, 201 (1983).

Google Scholar

[13] S.B. Stringfellow, S. Gupta, C. Shaw, J.R. Alcock and R.W. Whatmore, J. European Ceram. Soc., 22, 573 (2002)14. R.W. Whatmore, O. Molter and C.P. Shaw, J. European Ceram. Soc., 23, 721 (2003).

DOI: 10.1016/s0955-2219(01)00316-8

Google Scholar

[15] N. Stogdale, S. Hollock, N. Johnson and N. Sumpter Proc SPIE (2003).

Google Scholar

[16] M. Mansi, S.G. Porter, J.L. Galloway, N. Sumpter Proc SPIE (2001).

Google Scholar

[17] A. Navarro, R.W. Whatmore and J.R. Alcock (2004) J. Electroceramics, 13, 413, (2004).

Google Scholar

[18] C. P Shaw, R.W. Whatmore and J.R. Alcock, To be published.

Google Scholar

[19] P.P. Donohue, M.A. Todd, C.J. Anthony, A.G. Brown, M.A.C. Harper and R. Watton Integrated Ferroelectrics, 41, 25 (2001).

Google Scholar

[20] S.R. Gurkovitch and J. B Blum, Ferroelectrics, 62, 189 (1985).

Google Scholar

[21] K.D. Budd, S.K. Dey and D.A. Payne, Brit. Ceram. Proc, 36, 107 (1985).

Google Scholar

[22] G. Yi, Z. Wu and M. Sayer, J. Appl. Phys. 64, 2717 (1988).

Google Scholar

[23] R.W. Schwartz, T.J. Boyle, S.J. Lockwood, M.B. Sinclair, D. Dimos and C.D. Buchheit, Integrated Ferroelectrics, 7, 259 (1995).

Google Scholar

[24] N.J. Phillips and S.J. Milne, J. Mater. Chem., 1, 893 (1991).

Google Scholar

[25] Q. Zhang, R.W. Whatmore and M.E. Vickers, J. Sol. Gel Science & Technology, 15, 13 (1999).

Google Scholar

[26] Q. Zhang and R.W. Whatmore, J. Phys. D: Appl. Phys., 34, 2296 (2001).

Google Scholar

[27] Q. Zhang , C. P. Shaw, Z. Huang and R. W. Whatmore, Integrated Ferroelectrics, 64, 207 (2004).

Google Scholar

[28] R.A. Dorey, S.B. Stringfellow, R.W. Whatmore, J. Euro. Ceram. Soc., 22, 2921 (2002).

Google Scholar

[29] R.A. Dorey and R.W. Whatmore , J. Electroceramics, 12, 191 (2004).

Google Scholar

[30] W.T. Welford and R. Winston, High collection non-imaging optics. New York, Academic Press; (1989).

Google Scholar

[31] R. Winston, I.M. Bassett and W.T. Welford, Progress in Optics. 27, 161 (1989).

Google Scholar

[32] R.W. Whatmore, S. Landi, C.P. Shaw and P.B. Kirby, Ferroelectrics, 318, 11 (2005).

Google Scholar