Rheology of Nanometric Powders

Article Preview

Abstract:

Use of environmentally friendly processing additives for nanometric powders has tremendous technological implications. In this study, the rheology of aqueous nanometric alumina powdersuspensions and variation of viscosity with solids content and with fructose concentration were studied by rheometry. The mechanism of dramatic viscosity reduction by fructose addition is studied by differential scanning calorimetry (DSC) and thermogravimetry (TGA). The interparticle forces between the particles were investigated by colloidal probe-atomic force microscopy (CP-AFM). DSC indicates that the significant fraction of water is bound on the surface hence does not contribute to flow of the particles. It also indicates that the fructose displaces water from the particle surface and reducing the interparticle forces. The interactions between the nanometric alumina particles in water can be explained by the DLVO theory. The interaction forces (amplitude and range) between nanometric alumina particles decrease with increasing fructose concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

347-355

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. N. Rittner, American Ceramic Society Bulletin 81 (2002) 33-36.

Google Scholar

[2] T. Abraham, Ceramic Trasactions 62 (1996) 3-13.

Google Scholar

[3] C. Crabb, G. Parkinson, Chemical Engineering 109 (2002) 29-31.

Google Scholar

[4] I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, P. N. Prasad, Journal of American Chemical Society 125 (2003) 7860-7865.

DOI: 10.1021/ja0343095

Google Scholar

[5] J. F. Brady, J. Chem. Phys 99 (1993) 567-581.

Google Scholar

[6] I. M. Krieger, T. J. Dougherty, Trans. Soc. Rheol. 3 (1959) 137-152.

Google Scholar

[7] J. C. v. d. Werff, C. G. d. Kruif, J. Rheology 33 (1989) 421-454.

Google Scholar

[8] M. Mooney, J. Colloid Sci. 6 (1951) 162-170.

Google Scholar

[9] B. Rand, R. Fries, Viscoelasticity of nano-alumina dispersions, in: J. J. Kingsley, C. H. Schilling, J. Adair (Ed. )'^'(Eds. ), Ceramic Transactions, vol 62, American Ceramic Society, Westerville, OH, 1996, p. ^pp.165-172.

Google Scholar

[10] O. Vasylkiv, Y. Sakka, V. V. Skorokhod, Journal of American Ceramic Society 86 (2003) 299-304.

Google Scholar

[11] G. Tari, M. F. Ferreira, A. T. Fonseca, Ceramics International 25 (1990) 577- 580.

Google Scholar

[12] G. Tari, M. F. Ferreira, A. T. Fonseca, O. Lyckfeldt, J. European Ceramic Society 18 (1998) 249-253.

Google Scholar

[13] M. Schneider, J. Claverie, C. Graillat, T. F. McKenna, J. Appl. Polym. Sci. 84 (2002) 1878-1896.

Google Scholar

[14] A. A. Zaman, B. M. Moudgil, J. Rheology 42 (1998) 21-39.

Google Scholar

[15] A. Zupancic, R. Lapasin, A. Kristoffersson, J. European Ceramic Society 18 (1998) 476-477.

Google Scholar

[16] W. A. Ducker, T. J. Sander, R. M. SenderRichard, Langmuir 8 (1992) 1831- 1836.

Google Scholar

[17] S. Veeramasuneni, M. R. Yalamanchili, J. D. Miller, Journal of Colloid and Interface Science 184 (1996) 594-600.

Google Scholar

[18] H. G. Pedersen, L. Bergstrom, J. Am. Ceram. Soc. 82 (1999) 1137-1145.

Google Scholar

[19] H. G. Pedersen, Langmuir 15 (1999) 3015-3017.

Google Scholar

[20] H. J. M. Bowen, J. Donohue, O. Kennard, D. H. Whiffen, Tables of Interatomic Distances and configuration in Molecules and Ions, The Chemical Society Burlington House, W. 1, London, 1958, p.

DOI: 10.1016/0039-9140(59)80043-6

Google Scholar

[21] C. Li, M. Akinc, J. Wiench, M. Pruski, C. H. Schilling, Journal of the American Ceramic Society 88 (2005) 2762-2768.

DOI: 10.1111/j.1551-2916.2005.00535.x

Google Scholar

[22] T. Morimoto, M. Nago, F. Tokuda, J. Physical Chemistry 73 (1969) 243-248.

Google Scholar

[23] M. Kodama, H. Aoki, Water behavior in phospholipid bi-layer systems, in: N. Garti (Eds. )Surfactant science Thermal Behavior of Dispersed Systems, vol 93, 2001, pp.247-294.

Google Scholar