Synthesis and Photochemical Properties of White Calcia-Doped Ceria Nanoparticles via Soft Solution Processes

Article Preview

Abstract:

White nanoparticles of calcia-doped ceria were prepared from the precipitate by reacting CeCl3-CaCl2 mixed solution with NaOH solution at pH 12 and the oxidation with hydrogen peroxide solution at 40oC, followed by the calcination at 700oC for 1 h. The sample before calcination contained significant amount of OH- in the lattice and was yellow, but the powders calcined above 700oC were white, indicating that cationic defect formed by replacing O2- with OH- played as the color center. Calcia-doped ceria particles were coated with amorphous silica by means of seeded polymerization technique using hydrolysis of tetraethylorthosilicate (TEOS) or acid hydrolysis of sodium silicate. The silica coating by seeded polymerization with TEOS was much more efficient for the reduction of catalytic activity of ceria for the oxidation of organic materials than that by acid hydrolysis of sodium silicate. It is confirmed that ceria particles caused far less damage to the DNA plasmids upon UV illumination than either the titania or the zinc oxide reference pigments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

685-690

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Cai, K. Hashimoto, K. Itoh, Y. Kubota and A. Fujita: Bull. Chem. Soc. Jpn. Vol. 64 (1991), p.1268.

Google Scholar

[2] Y. Yamamoto, W.C. Dunlap, N. Imai, R. Mashita, R. Konaka, M. Inoue, Y. Hasegawa and T. Miyoshi: Proceedings of 20th IFSCC Congress Canes Vol. 1 (1998), p.153.

Google Scholar

[3] N. Serpone, A. Salinaro, A.V. Emeline, S. Horikoshi, H. Hidaka, and J. Zhao: Photochem. Photobiol. Sci. VCol. 1 (2002), p.970.

Google Scholar

[4] S. Yabe and S. Momose: J. Soc. Cosmet. Chem. Jpn. Vol. 32 (1998), p.372.

Google Scholar

[5] P. Chen and I. Chen: J. Am. Ceram. Soc. Vol. 76 (1993), p.1577.

Google Scholar

[6] M. Hirano and E. Kato: J. Am. Ceram. Soc. Vol. 79 (1996), p.777.

Google Scholar

[7] T. Masui, K. Fujikawa, K. Machida, T. Sakata, H. Mori and G. Adachi: Chem. Mater. Vol. 9, (1997), p.2197.

Google Scholar

[8] X. Yu, F. Li, X. Ye, X. Xin and Z. Xue: J. Am. Ceram. Soc. Vol. 83 (2000), p.964.

Google Scholar

[9] W. Stöber, A. Fink and E. Bohn: J. Colloid Interface Sci. Vol. 26 (1968), p.62.

Google Scholar

[10] Y. Kobayashi, K. Misawa, M. Kobayashi, M. Takeda, M. Konno, M. Satake, Y. Kawazoe, N. Ohuchi and A. Kasuya: Coll. and Surf. A: Physicochem. Eng. Aspects Vol. 242 (2004), p.47.

DOI: 10.1016/j.colsurfa.2004.04.052

Google Scholar

[11] Y. Kobayashi, K. Misawa, M. Takeda, M. Kobayashi,M. Satake, Y. Kawazoe, N. Ohuchi, A. Kasuya and M. Konno: Coll. and Surf. A: Physicochem. Eng. Aspects Vol. 251 (2004), p.197.

DOI: 10.1016/j.colsurfa.2004.10.007

Google Scholar

[12] H. Hidaka, H. Kobayashi, T. Koike, T. Sato and N. Serpone: J. Oleo Sci. Vol. 55 (2006), in press.

Google Scholar

[13] J. Frank, J.V. Geil and R. Freaso: Food Technol. Vol. 36(1982), p.71.

Google Scholar

[14] M. W. Laubli and P. A. Bruttel: J. Amer. Oil Chem. Soc. Vol. 63 (1986), 792.

Google Scholar

[15] C. Kato and K. Makabe: J. Jpn. Oil Chem. Soc. Vol. 42 (1993), 55.

Google Scholar

[16] A. Ahniyaz, T. Fujiwara, T. Fujino and M. Yoshimura: J. Nanosci. Nanotechnol. Vol. 4 (2004), p.233.

Google Scholar

[17] A. Ahniyaz, T. Watanabe and M. Yoshimura: J. Phys. Chem. B Vo. 109 (2005), p.6136.

Google Scholar

[18] Q. Liu, Z. Xu, J. A. Finch and R. Egerton: Chem. Mater. Vol. 10 (1998), p.3936.

Google Scholar

[19] Dunford, A. Salinaro, L. Cai, Nick Serpone, S. Horikoshi, H. Hidaka and J. Knowland: FEBS Letters: Vol. 418 (1997), p.87.

DOI: 10.1016/s0014-5793(97)01356-2

Google Scholar