Structure of Yttrium Aluminium Garnet Obtained by the Glycothermal Method

Article Preview

Abstract:

The reaction of a stoichiometric mixture of aluminium isopropoxide and yttrium acetate in 1,4-butanediol (1,4-BG) at 300 °C directly yielded crystalline yttrium aluminium garnet (YAG), while the reaction in ethylene glycol (EG) afforded an amorphous product in which a large amount of EG moieties remained. The latter product exhibited an exothermic peak due to the crystallization of YAG at around 900 °C and single-phase YAG was obtained by calcination at 1000 °C. The YAG sample directly obatained in 1,4-BG had a large unit cell parameter (12.144 Å), whereas the YAG sample obtained by the latter method had a unit cell parameter (12.015 Å) essentially identical with the value (12.01 Å) reported in the JCPDS card. Rietveld analysis indicates that the former crystals had Al vacancies at 24d sites and oxygen vacancies while the latter was essentially free from these vacancies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

691-696

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Xia, S. Zhou, J. Zhang, S. Wang, Y. Liu and J. Xu: J. Cryst. Growth Vol. 283 (2005), p.257.

Google Scholar

[2] M. Nishi, S. Tanabe, M. Inoue, M. Takahashi, K. Fujita and K. Hirao: Opt. Mater. Vol. 27 (2005), p.655.

Google Scholar

[3] I. Warshaw and R. Roy: J. Am. Ceram. Soc. Vol. 42 (1959), p.434.

Google Scholar

[4] J. S. Abell, I. R. Harris, B. Cockayne and B. Lent: J. Mater. Sci. Vol. 9 (1974), p.527.

Google Scholar

[5] X. Guo, P. S. Devi, B. G. Ravi, J. B. Parise, S. Sampath and J. C. Hanson: J. Mater. Chem. Vol. 14 (2004), p.1288.

Google Scholar

[6] H. M. Wang, M. C. Simmonds, Y. Z. Huang and J. M. Rodenburg: Chem. Mater. Vol. 15 (2003), p.3474.

Google Scholar

[7] X. Li, H. Liu, J. Wang, X. Zhang and H. Cui: Opt. Mater. Vol. 25 (2004), p.407.

Google Scholar

[8] M. Inoue, T. Nishikawa, T. Nakamura and T. Inui: J. Am. Ceram. Soc. Vol. 80 (1997), p.2157.

Google Scholar

[9] M. Inoue, T. Nishikawa, H. Otsu, H. Kominami and T. Inui: J. Am. Ceram. Soc. Vol. 81 (1998), p.1173.

Google Scholar

[10] M. Inoue: J. Phys.: Condens. Matter Vol. 16 (2004), p. S1291.

Google Scholar

[11] M. Inoue, H. Otsu, H. Kominami and T. Inui: J. Am. Ceram. Soc. Vol. 74 (1991), p.1452.

Google Scholar

[12] T. Takamori and L. D. David: Am. Ceram. Soc. Bull. Vol. 65 (1986), p.1282.

Google Scholar

[13] Y. Hakuta, K. Seino, H. Ura, T. Adschiri, H. Takizawa and K. Arai: J. Mater. Chem. Vol. 9 (1999), p.2671.

Google Scholar

[14] M. Inoue, T. Nishikawa and T. Inui: J. Mater. Sci. Vol. 33 (1998), p.5835.

Google Scholar

[15] X. Li, H. Liu, J. Wang, H. Cui and F. Han: Mater. Res. Bull. Vol. 39 (2004), p. (1923).

Google Scholar

[16] F. Izumi and T. Ikeda: Mater. Sci. Forum Vol. 321-324 (2000), p.198.

Google Scholar

[17] M. Inoue, H. Kominami and T. Inui: Nippon Kagaku Kaishi (1991), p.3331.

Google Scholar

[18] I. F. Guilliat and N. H. Brett: J. Mater. Sci. Vol. 5 (1970), p.615.

Google Scholar