Growth and Characterization of Tungsten Oxide for Applications in Nanoelectronics

Article Preview

Abstract:

Tungsten oxide nanorods were prepared in a hot filament chemical vapor deposition (HFCVD) reactor. A mixture of gases containing hydrogen, oxygen or hydrogen and methane mixed with water vapor were passed into a quartz glass jar reactor and activated using a heated tungsten filament. The resulting deposits were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD), and Raman Spectroscopy. The deposit consisted of tungsten oxide nanorods (5 – 10 nm diameter and 50 – 75 nm long) and tungsten nanospheres with diameters of ~50nm. The tungsten oxide is then reduced to metallic tungsten by annealing in a hydrogen environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-118

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Lee, H.M. Cheong, E. Tracy, A. Mascarenhas, D.K. Benson, and S.K. Deb, Electrochimica Acta 44, 3111 (1999). 2. R.G. Gordon, S. Barry, J.T. Barton, and R.R. Broomhall-Dillard, Thin Solid Films 392, 231 (2001).

DOI: 10.1016/s0040-6090(01)01033-1

Google Scholar

[3] T. Nanba, T. Takahashi, J. Takada, A. Osaka, Y. Miura, I. Yasui, A. Kishikoto, and T. Kudo; Journal of Non-Crystalline Solids 178, 233 (1994).

DOI: 10.1016/0022-3093(94)90290-9

Google Scholar

[4] A. Rougier, F. Portemer, A. Quede, and M. El Marssi, Applied Surface Science 153, 1 (1999).

Google Scholar

[5] S.C. Moulzolf, S. Ding, and R.J. Lad, Sensors and Actuators B 77, 375 (2001).

Google Scholar

[6] S. Lee, H.M. Cheong, P. Liu, D. Smith, C.E. Tracy, A. Mascarenhas, J.R. Pitts, and S.K. Deb, Electrochimica Acta 46, 1995 (2001).

DOI: 10.1016/s0013-4686(01)00379-6

Google Scholar

[7] J. Nowoczin, H. Shanak, C. Ziebert, H. Schmitt, and K.H. Ehses, Phys. Stat. Sol. (A) 202, 6, 1073 (2005).

DOI: 10.1002/pssa.200420017

Google Scholar

[8] C. Bittencourt, R. Landers, E. Llobert, X. Correig, and J. Calderer, Semiconductor Science and Technology 17, 522 (2002).

Google Scholar

[9] G.R. Bamwenda, and H. Arakawa, Appl. Catal. A 210, 181 (2001).

Google Scholar

[10] F.B. Li, G.B. Gu, X.J. Li, and H.F. Wan, Acta Physics-Chim. Sinica 16, 997 (2000).

Google Scholar

[11] J. Hao, S.A. Studenikin, and M. Cocivera, J. Appl. Physics 90, 5064 (2001).

Google Scholar

[12] D.W. Bullett, J. Phys. C: Solid State Physics 16, 2197 (1983).

Google Scholar

[13] D.Z. Guo, K. Yu-Zhang, A. Gloter, G.M. Zhang and Z.Q. Xue, J. Mater. Res. 19, 12, (2004).

Google Scholar

[14] D. Gogova, K. Gesheva, A. Szekeres, and M. Sedova-Vassileva, Phys. Stat. Sol. (A) 176, 969 (1999).

DOI: 10.1002/(sici)1521-396x(199912)176:2<969::aid-pssa969>3.0.co;2-9

Google Scholar

[15] D. Gogova, K. Gesheva, A. Kakanakova-Georgieva, and M. Surtchev, European Physics Journal Ap 11, 167 (2000).

DOI: 10.1051/epjap:2000159

Google Scholar

[16] J. Liu, Y. Zhao, and Z. Zhang; J. Physics: Condens. Matter 15, 453 (2003).

Google Scholar

[17] K. Lee, W.S. Seo, and J.T. Park, J. Am. Chem. Soc 125, 3408 (2003).

Google Scholar

[18] D.P. Haberman, Proc. SPIE 3535, 185.

Google Scholar

[19] B.W. Faughnan, R.S. Crandall, and P.M. Heyman, Rca Rev. 36, 177 (1975).

Google Scholar

[20] E. Cazzanelli, C. Vinegoni, G. Mariotto, A. Kuzmin, and J. Purans, Solid State Ionics 123, 67 (1999).

Google Scholar

[21] G. Gu, B. Zheng, W.Q. Han, S. Roth, and J. Liu, Nanoletters 2, 8, 849 (2002).

Google Scholar

[22] J. Liu, Z. Zhang, Y. Zhao, X. Su, S. Liu, and E. Wang, Small 1, 3, 310 (2005).

Google Scholar

[23] U. Opara-Krasovec, R. Jese, B. Orel, J. Grdadolnik, and G. Drazic, Monatshefte Fur Chemie 133, 1115 (2002).

Google Scholar

[24] M. Boulova, and G. Lucazeau, Journal of Solid State Chemistry 167, 425 (2002).

Google Scholar

[25] A.H. Jayatissa, S. Cheng, and T. Gupta, Materials Science and Engineering B 109, 269 (2004).

Google Scholar

[26] J.O. Hougen, R.R. Reeves, and G.G. Mannella, Industrial and Engineering Chemistry 48, 2 (1956).

Google Scholar

[27] F. Okuyama, Journal of Crystal Growth 38, 103 (1977).

Google Scholar