Vacuum Thermionic Energy Conversion Based on Nanocrystalline Diamond Films

Article Preview

Abstract:

Vacuum thermionic energy conversion achieves direct conversion of heat into electrical energy. The process involves thermionic electron emission from a hot surface and collection of the electrons on a cold surface where the two surfaces are separated by a small vacuum gap. Results are presented which indicate that nanocrystalline diamond films could lead to highly efficient thermionic energy conversion at temperatures less that 700°C. A critical element of the process is obtaining a stable, low work function surface for thermionic emission. Results are presented which establish that N-doped diamond films with a negative electron affinity can exhibit a barrier to emission of less than 1.6 eV. Films can be deposited onto field enhancing structures to achieve an even lower effective work function. Alternatively, nanocrystalline diamond films prepared with S doping exhibit field enhanced thermionic emission and an effective work function of ~1.9 eV. The field enhanced structures can reduce the effect of space charge and allow a larger vacuum gap. The possibility of a low temperature nanocrystalline diamond based thermionic energy conversion system is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-92

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.A.M. Köck, J.M. Garguilo, B. Brown, R.J. Nemanich: Diamond Relat. Mater. Vol. 11 (2002), pp.774-779.

Google Scholar

[2] F.A.M. Koeck, J.M. Garguilo, R.J. Nemanich: Diamond Relat. Mater. Vol. 13 (2004), p.2052- (2055).

Google Scholar

[3] F.A.M. Koeck, R.J. Nemanich: Diamond Relat. Mater. Vol. 15 (2006), pp.217-220.

Google Scholar

[4] J.M. Garguilo, F.A.M. Koeck, R.J. Nemanich, X.C. Xiao, J.A. Carlisle, O. Auciello: Phys. Rev. B 72 (2005), Art. No. 165404.

Google Scholar

[5] J.R. Smith, R.J. Nemanich and G.L. Bilbro: Diamond Relat. Mater. Vol. 15 (2006) in press.

Google Scholar

[6] F.A.M. Köck, J.M. Garguilo, R.J. Nemanich: Diamond Relat. Mater. Vol. 14 (2005), pp.704-708.

Google Scholar

[7] F.A.M. Koeck, R.J. Nemanich: Diamond Relat. Mater. Vol. 14 (2005), p.2051-(2054).

Google Scholar

[8] G. Hatsopoulous, E. Gyftopoulous: Thermionic Energy Conversion Vol. 1 (MIT Press, Cambridge, 1973).

Google Scholar

[9] S. Dushman: Phys. Rev. Vol. 21, (1923), pp.623-636.

Google Scholar

[10] O.W. Richardson: Phys. Rev. Vol. 23 (1925), pp.153-155.

Google Scholar

[11] M. Park, A.T. Sowers, C. Lizzul Rinne, R. Schlesser, L. Bergman, R.J. Nemanich, Z. Sitar, J.J. Hren, and J. J. Cuomo: J. Vac. Sci. Technol. B 17 (1999), pp.734-739.

DOI: 10.1116/1.590630

Google Scholar

[12] J. Mort, M.A. Machonkin and K. Okumura: Appl. Phys. Lett. 59 (1991), pp.3148-3150.

Google Scholar

[13] R. G. Farrer: Solid State Comm. Vol. 7 (1969), pp.685-687.

Google Scholar

[14] G. Gaertner, P. Geittner and D. Raasch: Appl. Surf. Sci. Vol. 201 (2002), pp.61-68.

Google Scholar

[15] A.R. Krauss, O. Auciello, M.Q. Ding, D.M. Gruen, Y. Huang, V.V. Zhirnov, E.I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, and N. Suetin: J. Appl. Phys. Vol. 89 (2001), p.2958.

DOI: 10.1063/1.1320009

Google Scholar

[16] J. Birrell, J.E. Gerbi, O. Auciello, J.M. Gibson, D.M. Gruen, and J.A. Carlisle: J. Appl. Phys. Vol. 93 (2003), p.5606.

Google Scholar

[17] O. Auciello, J. Birrell, J.A. Carlisle, J.E. Gerbi, X.C. Xiao, B. Peng, and H.D. Espinosa: J. Phys. Condens. Matter Vol. 16 (2004), p. R539.

DOI: 10.1088/0953-8984/16/16/r02

Google Scholar

[18] A. Modinos: Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum Press, New York, NY 1984).

Google Scholar