Synthesis of Carbon Nanotubes by the Catalytic Decomposition of Methane

Article Preview

Abstract:

The influence of morphology of the support particles upon the nickel-catalyzed decomposition of methane into carbon nanotubes and hydrogen was explored using a thermogravimetric apparatus. High carbon nanotube yield was attained by the Ni catalysts supported on the glycothermally synthesized ZrO2 and Er3Ga5O12 particles, which had spherical shapes. Quite high carbon yield was also obtained by the Ni catalyst supported on spherical Al2O3 particles (Nanophase Tech. Corp.). It was concluded that the most important factor governing the carbon yield is the morphology of the catalyst support, which contributes to the internal pressure of carbon nanotubes thus determining their chemical potentials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-72

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Jia, Y. Wang, E. Tanabe, T. Shishido and K. Takehira: Microporous Mesoporous Mater. Vol. 57 (2003), p.283.

Google Scholar

[2] A.M. Cassell, J.A. Raymakers, J. Kong and H. Dai: J. Phys. Chem. B Vol. 103 (1999), p.6484.

Google Scholar

[3] Y. Zhang and K.J. Smith: Catal. Today Vol. 77 (2002), p.257.

Google Scholar

[4] S. Takenaka, H. Ogihara and K. Otsuka: J. Catal. Vol. 208 (2002), 54.

Google Scholar

[5] T.V. Choudhary, C. Sivadinarayana, C.C. Chusuei, A. Klinghoffer and D.W. Goodman: J. Catal. Vol. 199 (2001), p.9.

Google Scholar

[6] Y. Nagayasu, A. Nakayama, S. Kurasawa, S. Iwamoto, E. Yagasaki and M. Inoue: J. Jpn. Petrol. Inst. Vol. 48 (2005), p.301.

DOI: 10.1627/jpi.48.301

Google Scholar

[7] Y. Nagayasu, K. Asai, A. Nakayama, S. Iwamoto, E. Yagasaki and M. Inoue: J. Jpn. Petrol. Inst. Vol. 49 (2006), p.186.

DOI: 10.1627/jpi.49.186

Google Scholar

[8] A. Nakayama, K. Asai, Y. Nagayasu, S. Iwamoto, E. Yagasaki and M. Inoue: J. Jpn. Petrol. Inst. in press.

Google Scholar

[9] M. Inoue, H. Kominami and T. Inui: Appl. Catal. A General Vol. 97 (1993), p. L25.

Google Scholar

[10] M. Inoue, T. Nishikawa, H. Otsu, H. Kominami and T. Inui: J. Am. Ceram. Soc. Vol. 81 (1998),. p.1173.

Google Scholar

[11] M. Inoue: J. Phys.: Condens. Matter Vol. 16 (2004),. p. S1291.

Google Scholar

[12] T. Takeguchi, S. Furukawa and M. Inoue: J. Catal. Vol. 202 (2001),. p.14.

Google Scholar

[13] J. Rostrup-Nielsen and D. L. Trimm: J. Catal. Vol. 48 (1977), p.155.

Google Scholar

[14] L.S. Lobo and D.L. Trimm: Nature (London) Vol. 234 (1971),. p.15.

Google Scholar

[15] J. Rostrup-Nielsen: Catalysis-Science and Tecknolory Vol. 5, ed. by J.R. Anderson. M. Boudart, (Springer-Verlag, Berlin 1984), chap. 1.

Google Scholar

[16] S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey and F. Derbyshire: Chem. Phys. Lett. Vol. 315 (1999), p.25.

Google Scholar

[17] J.W. Snoeck, G.F. Froment and M. Fowles: J. Catal. Vol. 169 (1997), p.240.

Google Scholar

[18] M.A. Ermakova, D.Y. Ermakov and G.G. Kuvshinov: Appl. Catal. A General Vol. 201 (2000), p.61.

Google Scholar

[19] F. Cataldo: Carbon Vol. 37 (1999), p.161.

Google Scholar

[20] T. Jawhari, A. Roid and J. Casado: Carbon Vol. 33 (1995), p.1561.

Google Scholar

[21] R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates and R.J. Waite: J. Catal. Vol. 26 (1972), p.51.

Google Scholar

[22] A.J.H.M. Kock, P.K. Bokx, E. Boellaard, W. Klop and J.W. Geus: J. Catal. Vol. 96 (1985), p.468.

Google Scholar

[23] R.T. Yang and J.P. Chen: J. Catal. Vol. 115, (1989), p.52.

Google Scholar