Influence of Temperature on Nano-Graphene Structuring of PLD Grown Carbon Films - An X-Ray Diffraction Study

Article Preview

Abstract:

The physical properties of graphene nano-structures are highly anisotropic and generally correlated to the graphene sheet orientation. We investigated the capability to grow nano-graphene structured carbon films and to control their texturing by pulsed laser ablation of a pyrolytic graphite target (Nd:YAG laser, 2nd harmonic: λ=532 nm, hν=2.33 eV, τ=7 ns, ν=10 Hz, φ=7 J/cm2), operating at different temperature conditions. Carbon films were deposited on Si <100> substrates. Detailed characterisation by synchrotron X-ray measurements were performed on samples deposited in vacuum (~10-3 Pa) at high substrate temperatures (>800°C) and at room temperature followed by post-annealing at high temperature (>800°C). The X-ray measurements established the formation of nano-sized graphene structures for both sample sets. In the first set, the nano-particles are correlated among them, their size increases with substrate temperature and a longitudinal growth of parallel graphene layers occurs, with the ˆc axis parallel to the substrate. In post annealed sample set, on the contrary, the nano-particles size is smaller and depends weakly on annealing temperature. The graphene ˆc axis results to be randomly oriented up to ~850°C. Above this temperature it seems that a transition phase occurs and the c axis results to lie parallel to substrate plane.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-60

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A. Talin, K.A. Dean, J.E. Jaskie, Solid-State Electronics 45 (2001) 963.

Google Scholar

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

DOI: 10.1126/science.1102896

Google Scholar

[3] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, in Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

DOI: 10.1016/s0921-5107(00)00444-x

Google Scholar

[4] A.N. Obraztsov, I. Yu. Pavlovsky, A.P. Volkov, A.S. Petrov, V.I. Petrov, E.V. Rakova, V.V. Roddatis, Diamond Relat. Mater. 8, 814 (1999).

DOI: 10.1016/s0925-9635(98)00421-x

Google Scholar

[5] A.N. Obraztsov, A.P. Volkov, Al.A. Zakhidov, D.A. Lyashenko, Yu.V. Petrushenko, O.P. Satanovskaya, Appl. Surf. Sci. 215, 214 (2003).

DOI: 10.1016/s0169-4332(03)00293-9

Google Scholar

[6] , C. Scilletta, M. Servidori, S. Orlando, E. Cappelli, L. Barba, P. Ascarelli, Appl. Surf. Sci. 252, 4877-4881 (2006).

DOI: 10.1016/j.apsusc.2005.06.049

Google Scholar

[7] E. Cappelli, S. Orlando, G. Mattei, C. Scilletta, F. Corticelli, P. Ascarelli, Appl. Phys. A 79, 2063 (2004).

DOI: 10.1007/s00339-004-2862-0

Google Scholar

[8] E. Cappelli, C. Scilletta, S. Orlando, R. Flammini, S. Iacobucci and P. Ascarelli, Thin Solid Films 482, 305 (2005).

DOI: 10.1016/j.tsf.2004.11.193

Google Scholar

[9] Norio Iwashita, Chong Rae Park, Hiroyuki Fujimoto, Minoru Shiraishi, Michio Inagaki, Carbon 42, 701 (2004).

Google Scholar

[10] B. E. Warren, Phys. Rev. 59, 693 (1941).

Google Scholar

[11] H. P. Klug , L. E. Alexander, X-ray Diffraction Procedures, J. Wiley & Sons, New York, (1954).

Google Scholar

[12] K. Yamamoto, F. Kokai, Y. Koga, S. Fujiwara, New Diam. Frontier Carbon Technol. 9 (1999) 129.

Google Scholar

[13] Kinetic roughening of growing surfaces, J. Krug, H. Spohn, in Solids Far From Equilibrium, edited by C. Godrèche, Cambridge University Press, Chapter 6, p.493, (1991).

Google Scholar