Patterned 2D and 3D Assemblies of Nanoparticles on Molecular Printboards

Article Preview

Abstract:

Functionalized nanoparticles have powerful applications as intermediates between solution and surface chemistry and as tools for nanofabrication. Two main examples of these have been shown. The functionalization of 3 nm gold and 55 nm silica nanoparticles with cyclodextrin (CD) host sites has been achieved, which allows: (i) the controlled aggregation with guestfunctionalized dendrimers in solution, (ii) the specific adsorption onto dendrimer-patterned substrates, and (iii) the fabrication of larger architectures using the layer-by-layer methodology. Aggregation in solution was shown to proceed through specific host-guest recognition. The adsorption onto surfaces employed so-called “molecular printboards”, which are self-assembled monolayers with the same cyclodextrin host recognition sites which allow the stable assembly of molecules and nanoparticles through multivalent host-guest interactions. CD silica nanoparticles were shown to adsorb specifically onto areas of such molecular printboards which were patterned with adamantyl-functionalized dendrimers. The layer-by-layer (LBL) assembly of such dendrimers and CD gold nanoparticles led to a controllable multilayer architecture with a thickness increase of about 2 nm per bilayer. The combination of the (bottom-up) particle LBL assembly and top-down surface structuring, in particular nanoimprint lithography, was shown to result in the formation of 3D objects down to sub-100 nm in all three dimensions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-114

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] (a) J. Huskens, M. A. Deij, D. N. Reinhoudt, Angew. Chem. Int. Ed. 2002, 41, 4467; (b) T. Auletta, B. Dordi, A. Mulder, A. Sartori, S. Onclin, C. M. Bruinink, C. A. Nijhuis, H. Beijleveld, M. Péter, H. Schönherr, G. J. Vancso, A. Casnati, R. Ungaro, B. J. Ravoo, J. Huskens, D. N. Reinhoudt, Angew. Chem. Int. Ed. 2004, 43, 369; (c) S. Onclin, A. Mulder, J. Huskens, B. J. Ravoo, D. N. Reinhoudt, Langmuir 2004, 20, 5460.

DOI: 10.1002/anie.200352767

Google Scholar

[2] (a) J. Liu, W. Ong, E. Román, M. J. Lynn, A. E. Kaifer, Langmuir 2000, 16, 3000; (b) J. Liu, J. Alvarez, A. E. Kaifer, Adv. Mater. 2000, 12, 1381.

DOI: 10.1021/la991519f

Google Scholar

[3] O. Crespo-Biel, A. Juković, M. Karlsson, D. N. Reinhoudt, J. Huskens, Isr. J. Chem. 2005, 45, 353.

Google Scholar

[4] J. J. Michels, M. W. P. L. Baars, E. W. Meijer, J. Huskens, D. N. Reinhoudt, J. Chem. Soc., Perkin Trans. 2 2000, (1914).

Google Scholar

[5] V. Mahalingam, S. Onclin, M. Péter, B. J. Ravoo, J. Huskens, D. N. Reinhoudt, Langmuir 2004, 20, 11756.

DOI: 10.1021/la047982w

Google Scholar

[6] G. Decher, Science 1997, 277, 1232.

Google Scholar

[7] O. Crespo-Biel, B. Dordi, D. N. Reinhoudt, J. Huskens, J. Am. Chem. Soc. 2005, 127, 7594.

Google Scholar

[8] O. Crespo-Biel, B. Dordi, P. Maury, M. Péter, D. N. Reinhoudt, J. Huskens, Chem. Mater. 2006, 18, in press.

DOI: 10.1021/cm052796c

Google Scholar

[9] P. Maury, M. Péter, V. Mahalingam, D. N. Reinhoudt, J. Huskens, Adv. Funct. Mater. 2005, 15, 451.

DOI: 10.1002/adfm.200400284

Google Scholar

[10] P. Maury, M. Escalante, D. N. Reinhoudt, J. Huskens, Adv. Mater. 2005, 17, 2718.

Google Scholar

[11] L. J. Guo, J. Phys. D, Appl. Phys. 2004, 37, R123.

Google Scholar