Simulation of the Growth of Copper Films for Micro and Nano-Electronics

Article Preview

Abstract:

Copper is a desirable material to replace aluminum-based alloys in the metallization of very large-scale integrated circuits, due to its high conductivity and reduced electromigration. However, practical ways to grow high quality copper layers on top of the common materials used as barrier layers on silicon is problematic, because of several issues, like poor adhesion and reduced coverage of high aspect-ratio surface features. We will describe efforts in developing procedures and chemical compounds for the growth of high quality films of copper on barrier layers. Our work is based on ab-initio calculations of the energetics and dynamics of the growth processes involved, including the interaction of the chemicals with the surfaces. The calculations presented use density functional theory, and in particular the SIESTA code.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-173

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Cavallotti, V. Gupta, C. Sieber and K.F. Jensen: Phys. Chem. Chem. Phys. Vol. 5 (2003), p.2818.

Google Scholar

[2] T. -Y. Chen, J. Vaissermann, E. Ruiz, J.P. Sénateur and P. Doppelt: Chem. Mater. Vol. 13 (2001), p.3993.

Google Scholar

[3] Cu(hfac)(tmvs) : 1, 1, 1, 5, 5, 5-hexafluoro-2, 4-pentanedionato-copper(I)-trimethylvinylsilane.

Google Scholar

[4] J.A.T. Norman and B.A. Muratore: U.S. Patent No. 5, 085, 731 (1992).

Google Scholar

[5] J.A.T. Norman, B.A. Muratore, P.N. Dyer, D.A. Roberts, A.K. Hochberg and L.H. Dubois: Mater. Sci. Eng. B Vol. B17 (1993), p.87.

Google Scholar

[6] E. Machado, M. Kaczmarski, P. Ordejón, D. Garg, J. Norman and H. Cheng: Langmuir Vol. 21 (2005), p.7608.

Google Scholar

[7] E. Machado, M. Kaczmarski, Benoît Braida, P. Ordejón, D. Garg, J. Norman and H. Cheng: Phys. Stat. Sol. (a) (submitted).

Google Scholar

[8] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal: J. Phys. Condens. Matter Vol. 14 (2002), p.2745.

DOI: 10.1088/0953-8984/14/11/302

Google Scholar

[9] P. Hohenberg and W. Kohn: Phys. Rev. Vol. 135 (1964), p.864.

Google Scholar

[10] W. Kohn and L. J. Sham: J. Phys. Rev. Vol. 140 (1965), p.1133}.

Google Scholar

[11] E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García and J. M. Soler: Phys. Stat. Sol. B Vol. 215 (1999), p.809.

Google Scholar

[12] N. Troullier and J. L. Martins: Phys. Rev. B Vol. 43 (1991), p. (1993).

Google Scholar

[13] L. Kleinman and D. M. Bylander: Phys. Rev. Lett. Vol. 48 (1982), p.1425.

Google Scholar

[14] J. P. Perdew and A. Zunger: Phys. Rev. B Vol. 23 (1981), p.5048.

Google Scholar

[15] D. M. Ceperley and B. Alder: J. Phys. Lett. Vol. 44 (1980), p.567.

Google Scholar

[16] S. Nosé: Mol. Phys. Vol. 52 (1084), p.256.

Google Scholar

[17] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1997), p.3865; Vol. 78 (1997), p.1396.

DOI: 10.1103/physrevlett.78.1396

Google Scholar

[18] E.S. Choi and H.H. Lee: J. Elec. Soc. Vol. 147 (2000), p.3730.

Google Scholar

[19] A. Jain, K.M. Chi, T.T. Kodas and M.J. Hampden-Smith: J. Electrochem. Soc. Vol. 140 (1993), p.1434.

Google Scholar

[20] J.A.T. Norman: J. Phys. IV France Vol. 11 (2001), p. Pr3-497.

Google Scholar

[21] M.B. Naik, W.N. Gill, R.H. Wentorf and R.R. Reeves: Thin Solid Films Vol. 262 (1995), p.60.

Google Scholar

[22] G.S. Girolami, P.M. Jeffries and L.H. Dubois: J. Am. Chem. Soc. Vol. 115 (1993), p.1015.

Google Scholar