Nanotubes Based Composites for Energy Storage in Supercapacitors

Article Preview

Abstract:

Composites based on nanotubes with such active materials as conducting polymers (e.g. polyaniline, polypyrrole), transition metal oxides (manganese oxide) and carbons enriched in heteroatoms (e.g. nitrogen) have been considered as electrodes for supercapacitors. The open mesopores network formed by the entanglement of nanotubes permits the ions to diffuse easily to the active surface of the composite components, hence, a good charge propagation and high values of capacitance (100-350 F/g) have been obtained. Since nanotubular materials are characterized by a high resiliency, the composite electrodes can easily adapt to the volumetric changes during charge/discharge, that drastically improves the cycling performance of supercapacitors. Additionally, it has been proved that combining materials with pseudocapacitance properties in an asymmetric configuration is a very promising direction for developing a new generation of high performance supercapacitors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-155

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.E. Conway Electrochemical supercapacitors - scientific fundamentals and technological applications Kluwer Academic/Plenum (1999).

Google Scholar

[2] E. Raymundo-Pinero, V. Khomenko, E. Frackowiak, F. Béguin, J. Electrochem. Soc., 152 (2005) A229.

Google Scholar

[3] K. Jurewicz, S. Delpeux, V. Bertagna, F. Béguin, E. Frackowiak, Chem. Phys. Lett. 347 (2001) 36.

DOI: 10.1016/s0009-2614(01)01037-5

Google Scholar

[4] V. Khomenko, E. Frackowiak, F. Béguin. Electrochim. Acta, 50 (2005) 2499.

Google Scholar

[5] K. Lota, V. Khomenko, E. Frackowiak, J. Phys. Chem. Solids, 65 (2004) 295.

Google Scholar

[6] G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak., Chem. Phys. Lett. 404 (2005) 53.

Google Scholar

[7] E. Frackowiak, in; J. Schwarz et al. (Eds. ) Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., New York, 2004, 537.

Google Scholar

[8] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Béguin. J. Power Sourc. 153 (2006) 153.

DOI: 10.1016/j.jpowsour.2005.05.030

Google Scholar

[9] F. Béguin, K. Szostak, G. Lota, E. Frackowiak, Adv. Mater. 17 (2005) 238.

Google Scholar

[10] S. Delpeux, K. Szostak, E. Frackowiak, S. Bonnamy, F. Béguin, J. Nanosci. Nanotech., 2 (2002) 481.

Google Scholar