Template Synthesis of Nanostructured Carbons

Article Preview

Abstract:

Uniform multiwalled carbon nanotubes can be synthesized using one-dimensional nanochannels of an aluminum anodic oxide film as a template. This technique allows one to prepare various types of unique carbon nanotubes. It is possible to prepare carbon nanotubes with a double coaxial structure of heteroatom-doped multiwalls. Test tube like carbon prepared by this technique was found to be dispersible in water without any post treatment. Moreover, a large carbon film with millions of carbon nanopillars on its one side was synthesized and it was demonstrated that such carbon film could be used as a corrosion-resistant but electrochemically active film electrode. In addition to these morphological control, complete filling of ferromagnetic metal into the whole cavity of carbon nanotubes was achieved by the template technique.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-74

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Kyotani, L. Tsai, and A. Tomita, Chem. Mater. Vol. 7 (1995), p.1427.

Google Scholar

[2] T. Kyotani, L. Tsai, and A. Tomita, Chem. Mater. Vol. 8 (1996), p.2109.

Google Scholar

[3] W. -H. Xu, T. Kyotani, B. K. Pradhan, T. Nakajima and A. Tomita, Adv. Mater. Vol. 15 (2003), p.1087.

Google Scholar

[4] Q. -H. Yang, W. -H. Xu, A. Tomita and T. Kyotani, Chem. Mater. Vol. 11 (2005), p.2940 Fig. 7 TEM images of Permalloy-filled carbon nanotube prepared using the AAO film with a thicknesses of 300 nm. Low (a) and high magnification images.

Google Scholar

[5] Q. -H. Yang, W. -H. Xu, A. Tomita, T. Kyotani, J. Am. Chem. Soc. Vol. 127 (2005), p.8956.

Google Scholar

[6] N. W. S. Kam, T. C. Jessop, P. A. Wender and H. Dai, J. Am. Chem. Soc. Vol. 126 (2004), p.6850.

Google Scholar

[7] J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon, H. Hu, R. W. Cohn, P. C. Eklund, D. T. Colbert, R. E. Smalley and R. C. Haddon, J. Phys. Chem. B Vol. 105 (2001), p.2525.

DOI: 10.1021/jp002596i

Google Scholar

[8] M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman and R. E. Smalley, Chem. Phys. Lett. Vol. 342 (2001), p.265.

DOI: 10.1016/s0009-2614(01)00490-0

Google Scholar

[9] M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lusting, R. E. Richardson and N. G. Tassi, Nature Mater. Vol. 2 (2003), p.338.

DOI: 10.1038/nmat877

Google Scholar

[10] H. Orikasa, N. Inokuma, S. Okubo, O. Kitakami and T. Kyotani, Chem. Mater. Vol. 18 (2006), p.1036.

Google Scholar

[11] K. Jian, H. Shim, A. Schwartzman, G. Grawfold and R. Hurt, Adv. Mater. Vol. 15 (2003), p.164.

Google Scholar

[12] H. Konno, S. Sato, H, Habazaki and M. Inagaki, Carbon Vol. 42 (2004), p.2756.

Google Scholar