Preparation and Cathodoluminescence Properties of Ga-Doped ZnS Nanowalls

Article Preview

Abstract:

Quasi-vertical ZnS nanostructures with different Ga doping level ( ZnS:Ga nanowalls ) have been synthesized in high yield from the mixed powders in the vacuum furnace at 1150 oC. ZnS:Ga nanowalls were grown vertically on the substrate with the size in the range of several microns and the thickness down to 15 nm and have very rough edges. The possible growth mechanism of nanowalls is likely governed by a vapor-solid (VS) growth mechanism. Room-temperature cathodoluminescence spectra of ZnS : Ga nanowalls show two emission peaks at approximately 443 nm and 578 nm. The emission mechanisms are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-53

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Cui, C. M. Lieber: Science Vol. 291 (2001), p.851.

Google Scholar

[2] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, R. E. Smalley: Science Vol. 275 (1997), p. (1922).

DOI: 10.1126/science.275.5308.1922

Google Scholar

[3] S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan: Science Vol. 289 (2000), p.604.

Google Scholar

[4] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang: Science Vol: 292 (2001), p.1897.

DOI: 10.1126/science.1060367

Google Scholar

[5] T. Yamamoto, S. Kishimoto, S. Iida: Phys. B Vol. 308-310 (2001), p.916.

Google Scholar

[6] P. Calandra, M. Goffredi, V. T. Liveri: Colloids Surf. A Vol. 160 (1999), p.9.

Google Scholar

[7] M. Bredol, J. Merichi: J. Mater. Sci. Vol. 33 (1998), p.471.

Google Scholar

[8] J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, Y. D. Li: Adv. Funct. Mater. Vol. 15 (2005), p.303.

Google Scholar

[9] K. Manzoor, S. R. Vadera, N. Kumar, T. R. N. Kutty: Appl. Phys. Lett. Vol. 84 (2004), p.284.

Google Scholar

[10] G. H. Li, F. H. Su, B. S. Ma, K. Ding, S. J. Xu, W. Chen: Phys. Stat. Sol. Vol. 241 (2004), p.3248.

Google Scholar

[11] R. A. Rosenberg, G. K. Shenoy, F. Heigl, S. T. Lee, P. S. G. Kim, X. -T. Zhou, T. K. Sham: Appl. Phys. Lett. Vol. 86 (2005), p.263115.

Google Scholar

[12] N. Murase, R. Jagannathan, Y. Kanematsu, M. Watanabe, A. Kurita, K. Hirata, T. Yazawa, T. Kushida: J. Phys. Chem. B Vol. 103 (1999), p.754.

DOI: 10.1021/jp9828179

Google Scholar

[13] D. Denzler, M. Olschewski, K. Sattler: J. Appl. Phys. Vol. 84 (1998), p.2841.

Google Scholar

[14] T. Nakamura, Y. Iida, K. Umezawa, K. Hikida, H. Fujiyasu, J. Kobayashi: J. Chem. Soc., Faraday Trans. Vol. 89 (1993), p.3723.

DOI: 10.1039/ft9938903723

Google Scholar