Nanocrystalline TiO2 for Solar Cells and Lithium Batteries

Article Preview

Abstract:

Nanocrystalline TiO2 (anatase) has attracted considerable interest for applications in photoelectrochemical solar cells. This device is based on charge injection from photoexcited organometallic dye which is adsorbed on the TiO2 surface. Titanium dioxide can electrochemically accommodate Li+ which is useful for a design of new Li-ion batteries. Whereas the charge storage in anatase or rutile is based on the Li-insertion into the bulk crystal, the monoclinic TiO2(B) exhibits an unusual pseudocapacitive Li-storage mechanism. The photoelectrochemical and Liinsertion activity of mesoscopic TiO2 depend significantly on the electrode morphology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-29

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima and K. Honda, Nature Vol. 238 (1972), p.37.

Google Scholar

[2] B. O'Regan and M. Grätzel, Nature Vol. 353 (1991), p.737.

Google Scholar

[3] M. Grätzel, Nature Vol. 414 (2001), p.338.

Google Scholar

[4] L. Kavan and M. Grätzel, Electrochim. Acta Vol. 34 (1989), p.1327.

Google Scholar

[5] L. Kavan, B. O`Regan, A. Kay and M. Grätzel, J. Electroanal. Chem. Vol. 346 (1993), p.291.

Google Scholar

[6] L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz and H. J. Scheel, J. Am. Chem. Soc. Vol. 118 (1996), p.6716.

Google Scholar

[7] L. Kavan and M. Grätzel, Electrochim. Acta Vol. 40 (1995), p.643.

Google Scholar

[8] J. Desilvestro, M. Grätzel, L. Kavan, J. Moser and J. Augustynski, J. Am. Chem. Soc. Vol. 107 (1985), p.2988.

Google Scholar

[9] S. Anderson, E. C. Constable, M. P. Dare-Edwards, J. B. Goodenough, A. Namnett, K. R. Seddon and R. D. Wright, Nature Vol. 280 (1979), p.571.

Google Scholar

[10] L. Kavan, K. Kratochvilová and M. Grätzel, J. Electroanal. Chem. Vol. 394 (1995), p.93.

Google Scholar

[11] L. Kavan, M. Grätzel, J. Rathousky and A. Zukal, J. Electrochem. Soc. Vol. 143 (1996), p.394.

Google Scholar

[12] L. Kavan, A. Attia, F. Lenzmann, S. H. Elder and M. Grätzel, J. Electrochem. Soc. Vol. 147 (2000), p.2897.

Google Scholar

[13] S. Y. Huang, L. Kavan, M. Grätzel and I. Exnar, J. Electrochem. Soc. Vol. 142 (1995), p.142.

Google Scholar

[14] L. Kavan and M. Grätzel, Electrochem. Solid-State Lett. Vol. 5 (2002), p. A39.

Google Scholar

[15] M. Kalbac, M. Zukalova and L. Kavan, J. Solid State Electrochem. Vol. 8 (2003), p.2.

Google Scholar

[16] L. Kavan, J. Prochazka, T. M. Spitler, M. Kalbac, M. Zukalova, T. Drezen and M. Grätzel, J. Electrochem. Soc. Vol. 150 (2003), p. A1000.

Google Scholar

[17] L. Kavan, T. Stoto, M. Grätzel, D. Fitzmaurice and V. Shklover, J. Phys. Chem. Vol. 97 (1993), p.9493.

Google Scholar

[18] P. Hoyer, Langmuir Vol. 12 (1996), p.1411.

Google Scholar

[19] M. Harada, F. Matsumoto, K. Nishio and H. Masuda, Electrochem. Solid State Lett. Vol. 8 (2005), p. E27.

Google Scholar

[20] L. Kavan, M. Zukalova, M. Kalbac and M. Grätzel, J. Electrochem. Soc. Vol. 151 (2004), p. A1301.

Google Scholar

[21] U. Bach, D. Lupo, P. Comte, J. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Grätzel, Nature Vol. 395 (1998), p.583.

DOI: 10.1038/26936

Google Scholar

[22] P. L. Cameron, L. M. Peter and S. Hore, J. Phys. Chem. B Vol. 109 (2005), p.930.

Google Scholar

[23] P. L. Cameron and L. M. Peter, J. Phys. Chem. B Vol. 107 (2003), p.14349.

Google Scholar

[24] R. L. Putnam, N. Nakagawa, K. M. McGrath, N. Yao, I. A. Aksay, S. M. Gruner and A. Navrotsky, Chem. Mater. Vol. 9 (1997), p.2690.

DOI: 10.1021/cm970419x

Google Scholar

[25] S. H. Elder, X. Gao, J. Li, D. Liu, D. E. McCready and C. F. Windisch, Chem. Mater. Vol. 10 (1998), p.3140.

Google Scholar

[26] A. Attia, M. Zukalova, J. Rathousky, A. Zukal and L. Kavan, J. Solid State Electrochem. Vol. 9 (2005), p.138.

Google Scholar

[27] E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, J. Am. Chem. Soc. Vol. 125 (2003), p.475.

Google Scholar

[28] P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka and G. D. Stucky, Nature Vol. 396 (1998), p.152.

Google Scholar

[29] P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides and G. D. Stucky, Science Vol. 282 (1998), p.2244.

DOI: 10.1126/science.282.5397.2244

Google Scholar

[30] S. Y. Choi, M. Mamak, N. Coombs, N. Chopra and G. A. Ozin, Adv. Funct. Mater. Vol. 14 (2004), p.335.

Google Scholar

[31] L. Kavan, J. Rathousky, M. Grätzel, V. Shklover and A. Zukal, J. Phys. Chem. B Vol. 104 (2000), p.12012.

Google Scholar

[32] M. Zukalova, M. Kalbac, L. Kavan, I. Exnar and M. Grätzel, Chem. Mater. Vol. 17 (2005), p.1248.

Google Scholar

[33] B. T. Holland, C. F. Blanford and A. Stein, Science Vol. 281 (1998), p.538.

Google Scholar

[34] J. E. G. J. Wijnhoven and W. L. Vos, Science Vol. 281 (1998), p.302.

Google Scholar

[35] S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Van de Langemaat and A. J. Frank, J. Am. Chem. Soc. Vol. 125 (2003), p.6306.

DOI: 10.1021/ja034650p

Google Scholar

[36] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir Vol. 14 (1998), p.3160.

DOI: 10.1021/la9713816

Google Scholar

[37] L. Kavan, M. Kalbac, M. Zukalova, I. Exnar, V. Lorenzen, R. Nesper and M. Grätzel, Chem. Mater. Vol. 16 (2004), p.477.

DOI: 10.1002/chin.200415018

Google Scholar

[38] H. Park and W. Choi, Langmuir Vol. 22 (2006), p.2906.

Google Scholar

[39] M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska and M. Grätzel, Nano Lett. Vol. 5 (2005), p.1789.

Google Scholar

[40] M. Wagemaker, A. P. M. Kentgens and F. M. Mulder, Nature Vol. 418 (2002), p.397.

Google Scholar

[41] M. Wagemaker, G. J. Kearley, A. A. Van Well, H. Mutka and F. M. Mulder, J. Am. Chem. Soc. Vol. 125 (2003), p.840.

Google Scholar

[42] H. Zhou, D. Li, M. Hibino and I. Honma, Angew. Chem. Int. Ed. Vol. 44 (2005), p.797.

Google Scholar

[43] X. Gao, H. Zhu, G. Pan, S. Ye, Y. Lan, F. Wu and D. Song, J. Phys. Chem. B Vol. 108 (2004), p.2868.

Google Scholar

[44] Y. Zhou, L. Cao, F. Zhang, B. He and H. Li, J. Electrochem. Soc. Vol. 150 (2003), p. A1246.

Google Scholar

[45] J. Li, Z. Tang and Z. Zhang, Electrochem. Solid State Lett. Vol. 8 (2005), p. A316 Revised Version: November (2006).

Google Scholar