Direct Synthesis of Tungsten Oxide Nanowires on Microscope Cover Glass

Article Preview

Abstract:

A simple technique to synthesis crystalline Tungsten Oxide nanowires is presented. Using a standard thermal hotplate, a pure 99.9% tungsten foil is annealed to 484 ± 5 oC under ambient condition to generate vapor deposition of the heated materials on a piece of 150μm thick glass cover slide pressing on the tungsten foil. Tungsten oxide nanowires are found to deposit on the cover slide facing the heated tungsten foil. These tungsten oxide nanowires were characterized with SEM, TEM, EDX, micro-Raman and XRD. The crystalline nanowires were found to be straight and clean with a diameter of 10-300nm and a length of a few tens of micrometers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-6

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lee K.H., Fang Y. K., Lee W.J., et al., Sens. Actuators, B Vol. 69, (2000), p.96.

Google Scholar

[2] Llobet E., Molas G., Molinas P., el at., J. Electrochem. Soc. Vol. 147. (2000), p.776.

Google Scholar

[3] Li F.B., Gu G.B., Li X.J., Wan H.F., Acta Phys. -Chim. Sinica, Vol. 16 (2000), p.997.

Google Scholar

[4] Qu W.M., Wlodarski W., Sens. Actuators, B Vol. 64, (2000), p.42.

Google Scholar

[5] Turyan I., Krasovec U.O., Orel B., Saraidorov T., el at., Adv. Mater. Vol. 12 (2000), p.330.

Google Scholar

[6] Sayama K. Mukasa K., Abe R., Abe Y., Arakawa H., Chem. Commun. Vol. 21 (2001), p.2416.

DOI: 10.1039/b107673f

Google Scholar

[7] Bock C., MacDougall B. Electrochim. Acata (2002), Vol. 47, p.3361.

Google Scholar

[8] Li Y, Bando Y and Golberg D, Adv. Mater. Vol. 15 (2003), p.1294.

Google Scholar

[9] Zhou J., Gong L., Shao Z.D., et al., Appl. Phys. Lett, Vol. 87 (2005) p.223108.

Google Scholar

[10] Liu K, Foord D T and Scipioni L, Nanotechnology Vol. 16 (2005), p.10.

Google Scholar

[11] Gu G, Zheng B, Han W Q, Roth S and Liu J, Nano Lett. Vol. 2 (2002), p.849.

Google Scholar

[12] Jin Y Z, Zhu Y Q, Whitby R L D, Yao N, Ma R, Watts P C P, Kroto H W andWalton D R M, J. Phys. Chem. B Vol. 108 (2004), p.15572.

Google Scholar

[13] Cho M H et al, J. Vac. Sci. Technol. B Vol. 22 (2004), p.1084.

Google Scholar

[14] Pfeifer J, Badaljan E, Tekula-Buxbaum P, et al., Cryst. Growth Vol. 169 (1996), p.727.

Google Scholar

[15] Liu J, Zhao Y and Zhang Z, J. Phys.: Condens. Matter Vol. 15 (2003), p. L453.

Google Scholar

[16] Lou X.W., Zeng H.C., Inorg. Chem. Vol. 42(20) (2003), p.6169.

Google Scholar

[17] Li X L, Liu J F and Li Y D, Inorg. Chem. (2003) Vol. 42(3), 921.

Google Scholar

[18] T. Yu, Y.W. Zhu, X. J Xu, et al., Small Vol. 2(1) (2006), p.80.

Google Scholar

[19] Frey G.L., Rothschild A., Sloan J., Rosentsveig R., et. al., J. S. S. Chem. Vol 162 (2001), p.300.

Google Scholar

[20] Boulova M., Rosman N., Bouvier P., and Lucanzeau G., J. Phys.: Condens. Matter, Vol. 14 (2002), pp.5849-5863.

DOI: 10.1088/0953-8984/14/23/314

Google Scholar

[21] Langmuir I., Phys. Rev., Vol. 4(2), (1915), pp.138-157.

Google Scholar