In Situ Observation of Quantized Growth of Titanium Silicide in Ultra High Vacuum Transmission Electron Microscope (UHV-TEM)

Article Preview

Abstract:

Dynamic study of the growth of TiSi2 nanorods on Si bicrystal was conducted in an ultrahigh vacuum transmission electron microscope. The growth of the nanorods was affected by the underlying dislocation grids significantly. The dislocation grids confined the shape of the nanoclusters and nanorods. Compared to the time of the nanorod remaining at the same length, the elongating time is relatively short. The dislocation network confined the nanorod to match the dislocation interspacing and the step-wise growth of the nanorod was found. The growth mechanism is attributed to the compliant effect. The observation was constructive to the basic understanding of the stress effect on the initial stage of the reaction of metals on Si.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-19

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Seger, P. - E. Hellstrom, J. Lu, B. G. Malm, M. Von Haartman, M. Ostling, and S. L. Zhang, Appl. Phys. Lett. 86, 253507 (2005).

Google Scholar

[2] T. N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bounanani, M. J. Kim, K. H. Chen, C. T. Wu, and L. C. Chen, Appl. Phys. Lett. 86, 083104 (2005).

Google Scholar

[3] H. F. Hsu, H. C. Hsu, T. F. Chiang, L. J. Chen, and H. L. Hsiao, Ultramicroscopy. 100, 247 (2004).

Google Scholar

[4] H. C. Hsu, H. F. Hsu, T. F. Chiang, K. F. Liao, and L. J. Chen, J. J. Appl. Phys, 43, 4537 (2004).

Google Scholar

[5] T. H. Yang, S. L. Cheng, and L. J. Chen, Thin. Solid. Films, 469-470, 513 (2004).

Google Scholar

[6] C. H. Liu, W. W. Wu, and L. J. Chen, Appl. Phys. Lett, 88, 023117 (2006).

Google Scholar

[7] R. A. Wind, M. J. Murtagh, F. Mei, Y. Wang, M. A. Hines, and S. L. Sass, Chem. Appl. Phys. Lett, 78, 2205 (2001).

Google Scholar

[8] C. H. Liu, W. W. Wu, and L. J. Chen, Appl. Phys. Lett, 88, 133112 (2006).

Google Scholar

[9] A. E. Romanov, P. M. Petroff, and J. S. Speck, Appl. Phys. Lett. 74, 2280 (1999).

Google Scholar

[10] A. Bourret, Surf. Sci, 432, 37 (1999).

Google Scholar

[11] F. Fournel, H. Moriceau, B. Aspar, K. Rousseau, J. Eymery, J. L. Rouviere, and Magnea, Appl. Phys. Lett. 80, 793 (2002).

DOI: 10.1063/1.1446987

Google Scholar

[12] F. Leroy, J. Eymery, P. Gentile, and F. Fournel, Appl. Phys. Lett. 80, 3078 (2002).

Google Scholar

[13] K. Rousseau, J. L. Rouviere, F. Fournel, and H. Moriceau, Appl. Phys. Lett. 80, 4121 (2002).

Google Scholar

[14] G. Woltersdorf, B. Heinrich, L. Woltersdof, and R. Scholz, J. Appl. Phys. 95, 7007 (2004).

Google Scholar

[15] H. F. Hsu, T. F. Chiang, H. C. Hsu and L. J. Chen, Jpn. J. Appl. Phys. 43, 4541 (2004).

Google Scholar

[16] F. E. Ejeckam, Y. H. Lo, S. Subramanian, H. Q. Hou, and B. E. Hammons, Appl. Phys. Lett. 70, 1685 (1997).

Google Scholar