Photoluminescence Response and Particle Size Control of CdSe Quantum Dots by Wet Chemical Synthesis for Biomedical Applications

Article Preview

Abstract:

The chalcogenide CdSe quantum dots (QDs) were obtained by wet chemical synthesis route, using cadmium oxide and pure selenium as precursors, hexadecylamine (HDA), tetradecylphosphine oxide (TDPO) and tri-n-octylphosphine oxide (TOPO) as complexing agents in tri-n-butylphosphine (TBP) solvent in the reactor with an argon protection atmosphere. This study aims at manipulating the size of QDs for the potential in vivo medical applications. The CdSe nanoparticles were analyzed by particle size analyzer, photoluminescence (PL) spectroscopy, FE-SEM, TEM, and XPS. The desired particle size and photoluminescence response of CdSe QDs can be achieved by adjusting proper molar ratios of HDA/TOPO and CdO/Se, along with the synthesis temperature and reaction time. Our results show that the obtained CdSe quantum dots have the average particle size of 1~10 nm within a size variation of 1.5 nm. The resultant CdSe QDs provide stable PL responses as excited by light sources of 388~550 nm wavelengths.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-43

Citation:

Online since:

September 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S-H. Choi, H. Song, I-K. Parkb, J-H. Yum, S-S. Kim, S. Lee, Y-E. Sung, J. of Photochemistry and Photobiology A: Chemistry, Vol.179 (2006), pp.135-141.

Google Scholar

[2] L. Hao, X. Gong, S. Xuan, H. Zhang, X. Gong, W. Jiang, Z. Chen, L. Hao et al. / Applied Surface Science, Vol. 252 (2006), pp.8724-8733.

DOI: 10.1016/j.apsusc.2005.12.084

Google Scholar

[3] Christian Kirchner, Tim Liedl, Stefan Kudera, Teresa Pellegrino, Almudena Mun˜oz Javier, Hermann E. Gaub, Sonja Sto1lzle, N. Fertig, and Wolfgang J. Parak, Nano Lett., Vol. 5 2 (2005) , pp.331-338. O. Palchik, R. Kerner, A. Gedanken, A. M. Weiss, M. A Slifkin and V. Palchik, J. Mater. Chem., Vol. 11 (2001), pp.874-878.

DOI: 10.1021/nl047996m

Google Scholar

[4] G-G. Yordanov, G-D. Gicheva, B-H. Bochev,C-D. Dushkin, E. Adachi, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 273 (2006), pp.10-15.

DOI: 10.1016/j.colsurfa.2005.07.036

Google Scholar

[5] Sander F. Wuister, Arie van Houselt,Celso de Mello Doneg, Dani_l Vanmaekelbergh, and Andries Meijerink, Angew. Chem. Int. Ed., Vol. 43 (2004), pp.3029-3033.

DOI: 10.1002/anie.200353532

Google Scholar

[6] J. P. Ge, Y. D. Li and G. Q. Yang, Chem. Commum., Vol. 17 (2002), pp.1826-1827.

Google Scholar

[7] X. G. Y. Ni, H. Liu, Q. Ye and Z. Zhang, Mater. Res. Bull., Vol. 36 9 (2001), pp.1609-1613.

Google Scholar

[8] E. Hao, H. Sun, Z. Zhou, J. Liu, B. Yang and J. Shen, hem.Mater., Vol. 11 (1999), pp.3096-3102.

Google Scholar

[9] D.V. Talapin, A.L. Rogach, A. Kornowski,M. Haase,and H. Weller, NanoLett., Vol.1 No.4 (2001), pp.207-211

Google Scholar

[10] L. Qu and X. Peng, J. Am. Chem. Soc., Vol. 124 9 (2002) , pp.2049-2055

Google Scholar