Bioinspired Polymer Surfaces for Nanodevices and Nanomedicine

Article Preview

Abstract:

The phospholipid molecule is one of the typical components of the cell membrane. In particular, the phosphorylcholine polar group is an electrically neutral head group. Arrangement of phospholipid polar groups and construct the surface, we applied 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers bearing a phosphorylcholine group in side chain, which was designed with the cell membrane as an inspiration. Versatile polymers comprising MPC could be synthesized, and their specific biofunctions were evaluated. Establishing an ultimate interface between biological circumstances and artificial materials, so-called biointerfaces, with multiple functions is important from the viewpoint of biomaterials science. Nonspecific protein adsorption is essential for achieving versatile biomedical applications. Simultaneously, bioconjugation and retention of its biofunction are crucial for a high-performance interface. In this article, we would like to introduce effectiveness of interface with highly biological functions composed of the MPC polymers for constructing nanobiodevices and nanomedicine.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5-14

Citation:

Online since:

September 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ishihara, T. Ueda, N. Nakabayashi: Polym. J. 22 (1990), p.355.

Google Scholar

[2] T. Ueda, H. Oshida, K. Kurita, K. Ishihara, N. Nakabayashi, Polym. J. 24 (1992), p.1259.

Google Scholar

[3] K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, N. Nakabayashi: J. Biomed. Mater. Res. 39 (1998), p.323.

DOI: 10.1002/(sici)1097-4636(199802)39:2<323::aid-jbm21>3.0.co;2-c

Google Scholar

[4] A.L. Lewis: Colloid Surf., B 18 (2000), p.261.

Google Scholar

[5] T. Moro, T. Y. Takatori, K. Ishihara, T. Konno, Y. Takigawa, T. Matsushita, U.-I. Chung, K. Nakamura, H. Kawaguchi: Nature Mater. 3 (2004), p.829.

DOI: 10.1038/nmat1233

Google Scholar

[6] T. Hasegawa, Y. Iwasaki, K. Ishihara: J. Biomed. Mater. Res. B 63 (2002), p.333.

Google Scholar

[7] K. Takei, T. Konno, J. Watanabe, K. Ishihara: Biomacromolecules 5 (2004), p.858.

Google Scholar

[8] K. Sakai-Kato, M. Kato, K. Ishihara, T. Toyo'oka: Lab on a Chip 4 (2004), p.4.

Google Scholar

[9] K. Kinoshita, K. Fujimoto, T. Yakabe, S. Saito, Y. Hamaguchi, T. Kikuchi, K. Nonaka, S. Murata, D. Masuda, W. Takada, S. Funaoka, S. Arai, H. Nakanishi, K. Yokoyama, K. Fujiwara, K. Matsubara: Nucleic Acids Res. 35 (2007), p e3.

DOI: 10.1093/nar/gkl939

Google Scholar

[10] K. Nishizawa, T. Konno, M. Takai, K. Ishihara: Biomacromolecules 9 (2008), p.403.

Google Scholar

[11] J. Watanabe, K. Ishihara: Biomacromolecules 7 (2006), p.171.

Google Scholar

[12] Y. Goto, R. Matsuno, T. Konno, M. Takai, K. Ishihara: Biomacromolecules 9 (2008) p.828.

Google Scholar

[13] J.-W. Park, S. Kurosawa, J. Watanabe, K. Ishihara: Anal. Chem. 76 (2004), p.2649.

Google Scholar

[14] J. Watanabe, K. Ishihara: Bioconjugate Chem. 18 (2007), p.1811.

Google Scholar

[15] J. Watanabe, K. Ishihara: Sensor Actuators B Chem. 129 (2008), p.87.

Google Scholar

[16] J. Watanabe, K. Ishihara: NanoBiotechnology in press (2008)

Google Scholar

[17] K. Ishihara, Y. Iwasaki, N. Nakabayashi: Polym. J. 31 (1999), p.1231.

Google Scholar

[18] T. Konno, J. Watanabe, K. Ishihara: Biomacromolecules 5 (2004), p.342.

Google Scholar

[19] K. Nishizawa, T. Konno, M. Takai, K. Ishihara: Proceedings of micro-TAS 2006, 1 (2006), p.335.

Google Scholar