Microemulsion Synthesis Strategies for ZrW2O8 Precursors

Article Preview

Abstract:

A zirconium tungstate (ZrW2O8) precursor was synthesized by a novel sol-gel method with zirconium oxychloride and tungstic acid as the zirconium and tungsten sources, respectively. Heat treatment at 600oC for 10 hours was adequate to crystallize the precursor. Use of excess zirconium source and the concentration of hydrochloric acid were found to affect the phase purity and crystallization temperature of ZrW2O8. Sizes of particles obtained were in submicron range in the absence of a microemulsion system. On the other hand, using water/oleylamine/hexane reverse micelle microemulsion technique monodispersed particles with sizes between 10 to 100nm were obtained. Nanoparticles were then successfully dispersed in a solvent with a carrier polymer to produce ZrW2O8 nanofibers with electrospinning technique.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-69

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. De Buysser, P. Smet, B. Schoofs, E. Bruneel, D. Poelman, S. Hoste and I. Van Driessche, Journal of Sol-Gel Science and Technology Vol. 43 (2007), pp.347-353.

DOI: 10.1007/s10971-007-1585-z

Google Scholar

[2] J. C. Chen, G. C. Huang, C. Hu and J. P. Weng, Scripta Materialia Vol. 49 (2003), pp.261-266.

Google Scholar

[3] J. GRAHAM, A. D. WADSLEY, J. H. WEYMOUTH and L. S. WILLIAMS, Journal of the American Ceramic Society Vol. 42 (1959), pp.570-570.

DOI: 10.1111/j.1151-2916.1959.tb13575.x

Google Scholar

[4] S. Nishiyama, T. Hayashi and T. Hattori, Journal of Alloys and Compounds Vol. 417 (2006), pp.187-189.

Google Scholar

[5] N. Khazeni, B. Özerciyes, B. Maviş, G. Gündüz and Ç. Üner, presented at the Proceedings of the 11th International Conference of the European Ceramic Society, Krakow, Poland, (2009).

Google Scholar

[6] K. Kanamori, T. Kineri, R. Fukuda, K. Nishio and A. Yasumori, Journal of the American Ceramic Society Vol. 91 (2008), pp.3542-3545.

DOI: 10.1111/j.1551-2916.2008.02726.x

Google Scholar

[7] A. P. Wilkinson, C. Lind and S. Pattanaik, Chemistry of Materials Vol. 11 (1998), pp.101-108.

Google Scholar

[8] U. Kameswari, A. W. Sleight and J. S. O. Evans, International Journal of Inorganic Materials Vol. 2 (2000), pp.333-337.

Google Scholar

[9] X. Yang, X. Cheng, X. Yan, J. Yang, T. Fu and J. Qiu, Composites Science and Technology Vol. 67 (2007), pp.1167-1171.

Google Scholar

[10] C. Closmann, A. W. Sleight and J. C. Haygarth, Journal of Solid State Chemistry Vol. 139 (1998), pp.424-426.

DOI: 10.1006/jssc.1998.7859

Google Scholar

[11] C. Georgi and H. Kern, Ceramics International Vol. 35 (2009), pp.755-762.

Google Scholar

[12] J. A. Colin, D. V. Camper, S. D. Gates, M. D. Simon, K. L. Witker and C. Lind, Journal of Solid State Chemistry Vol. 180 (2007), pp.3504-3509.

DOI: 10.1016/j.jssc.2007.10.012

Google Scholar

[13] L. C. Kozy, M. N. Tahir, C. Lind and W. Tremel, Journal of Materials Chemistry Vol. 19 (2009), pp.2760-2765.

Google Scholar

[14] X. Sun, J. Yang, Q. Liu and X. Cheng, Journal of Alloys and Compounds Vol. 481 (2009), pp.668-672.

Google Scholar

[15] Q. Xing, X. Xing, R. Yu, L. Du, J. Meng, J. Luo, D. Wang and G. Liu, Journal of Crystal Growth Vol. 283 (2005), pp.208-214.

DOI: 10.1016/j.jcrysgro.2005.05.041

Google Scholar

[16] X. Xing, Q. Xing, R. Yu, J. Meng, J. Chen and G. Liu, Physica B: Condensed Matter Vol. 371 (2006), pp.81-84.

DOI: 10.1016/j.physb.2005.09.041

Google Scholar