Elaboration and Mechanical Characterization of Al2O3-ZrO2-YAG Ultrafine Composites

Article Preview

Abstract:

Al2O3-YAG-ZrO2 composites have been produced by surface modification of a commercial nano-crystalline alumina powder with inorganic precursors of the desired second phases. The doped powders were calcined at various temperatures and for different times: as a function of the thermal treatment, zirconia directly crystallized on the alumina surface, while YAG phase was yielded by solid state reaction among an amorphous yttrium-rich precursor and alumina powder. Several compositions, with increasing second phases volume fractions, were investigated, precisely, Alumina-5vol.%YAG-5vol.%ZrO2, Alumina-20vol.%YAG-20vol.%ZrO2 and Alumina- 33vol.%YAG-33vol.%ZrO. Slip cast bodies were produced by aqueous suspensions of calcined and well-dispersed powders; free-sintering performed at 1500°C for 3 h allowed to reach full densification. The role of the second phases amount on the microstructural features and on some mechanical data preliminary evaluated was established.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-81

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Niihara: The Centennial Memorial Issue of the Ceramic Society of Japan 99, (1991) p.974.

Google Scholar

[2] R. Torrecillas, M. Schehl, L.A. Diaz et al.: J. Eur. Ceram. Soc. Vol. 27 (2007) p.143.

Google Scholar

[3] H. Mills, S. Blackburn: J. Eur. Ceram. Soc. Vol. 2 (2000, p.1085.

Google Scholar

[4] J. Chandradass, J.H. Yoon, D.S. Bae: Mat. Sci. Eng. A, Vol. 473 (2008), p.360.

Google Scholar

[5] J.D. Kuntz, G.D. Zhan, A.K. Mukherjee: MRS Bull. Vol. 29 (2004), p.22.

Google Scholar

[6] A. Mukhopadhyay, B. Basu in: International Materials Reviews Vol. 52 (2007), p.257.

Google Scholar

[7] A. Bellosi, D. Sciti, S. Guicciardi: J. Eur. Ceram. Soc. Vol. 24 (2004), p.3295.

Google Scholar

[8] L. Stearns, M. P. Harmer: J. Am. Ceram. Soc. Vol. 79 (1996), p.3013.

Google Scholar

[9] R.H.J. Hannink, P.M. Kelly, B.C. Muddle, J. Am. Ceram. Soc. Vol. 83 (2000), p.461.

Google Scholar

[10] T. Chen, S. Tekeli, R.P. Dillon, M.L. Mecartney: Ceram. Inter. Vol. 34 (2008, p.365.

Google Scholar

[11] T.A. Parthasarathy, T.I. Mah, K. Keller: J. Am. Ceram. Soc. Vol. 75 (1992), p.1756.

Google Scholar

[12] C. Oelgardt, J. Anderson, J.G. Heinrich, G.L. Messing: J. Eur. Ceram. Soc. Vol. 30 (2010), p.649.

Google Scholar

[13] H. Su, J. Zhang, L. Liu, H. Fu: Comp. Sci. Tech., Vol. 69 (2009), p.2657.

Google Scholar

[14] J. Pei, J. -T. Li, R. Liang, K. -X. Chen.: Ceram. Inter. Vol. 35 (2009), p.3269.

Google Scholar

[15] V. Naglieri, P. Palmero, L. Montanaro: J. Therm. Anal. Calorim. Vol. 97 (2009), p.231.

Google Scholar

[16] D.K. Kim,W. M. Kriven: J. Am. Ceram. Soc. Vol. 91 (2008), p.793.

Google Scholar

[17] P. Palmero, V. Naglieri, J. Chevalier at al.: J. Eur. Ceram. Soc. Vol. 29 (2009), p.59.

Google Scholar

[18] P. Palmero, M. Lombardi, L. Montanaro et al.: Int. J. Appl. Cer. Tech. Vol. 6 (2009), p.420.

Google Scholar

[19] R.G. Munro: J. Am. Ceram. Soc., Vol. 80 (1997), p. (1919).

Google Scholar

[20] J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, J. Guo: Optical Mat. Vol. 31 (2008), p.6.

Google Scholar

[21] A. H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas: Biomaterials Vol. 23 (2002), p.937.

DOI: 10.1016/s0142-9612(01)00206-x

Google Scholar