Clay Aerogel Composite Materials

Article Preview

Abstract:

A simple, inexpensive, and environmentally-friendly process for converting mixtures of clays and polymers has been developed. Polymer and clay are combined in water, and the mixtures are freeze dried to produce materials which have bulk densities typically in the range of 0.03 – 0.15 g/cm3. These low density polymer/clay aerogel materials possess good mechanical properties similar to those of traditional polymer foams, can be reinforced with fibers, modified with nanoparticles, biomineralized, or converted into porous ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-151

Citation:

Online since:

October 2010

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. C. Mackenzie; Clay-water relationships, Nature, Vol. 171, p.681 (1952).

Google Scholar

[2] H. van Olphen; Polyelectrolyte reinforced aerogels of clays—application as chromatographic adsorbents, Clay Miner., Vol. 15, p.423 (1967).

DOI: 10.1346/ccmn.1967.0150142

Google Scholar

[3] M. Gutierrez, Z. Y. Garcia-Carvajal, M. J. Hortiguela, L. Yuste, F. Rojo, M. L. Ferrer, F. Del Monte; Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli, J. Mater. Chem., Vol. 17, p.2992 (2007).

DOI: 10.1039/b707504a

Google Scholar

[4] L. Buttafuco, P. Engbers-Buijtenhuijs, A. A. Poot, P. J. Dijkstra, W. F. Daamen, T. H. Van Kuppevelt, I. Vermes, J. Feijen; First Steps Towards Tissue Engineering of Small-Diameter Blood Vessels: Preparation of Flat Scaffolds of Collagen and Elastin by Means of Freeze Drying, J Biomed Mater Res Part B: Appl Biomater., Vol. 77B, p.357 (2006).

DOI: 10.1002/jbm.b.30444

Google Scholar

[5] A. G. A. Coombes, E. Verdaerio, B. Shaw, X. Li, M. Griffin, S. Downes; Biocomposites of non -crosslinked natural and synthetic polymers, Biomaterials, Vol. 23, p.2118 (2002).

DOI: 10.1016/s0142-9612(01)00341-6

Google Scholar

[6] Y. Y. Hsu, J. D. Gresser, D. J. Trantolo, C. M. Lyons, P. R. J. Gangadharam, D. L. Wise; Low- density poly(DL-lactide-co-glycolide) foams for prolonged release of isoniazid, J. Controlled Release, Vol. 40, p.293 (1996).

DOI: 10.1016/0168-3659(95)00197-2

Google Scholar

[7] L. S. Somlai, S. A. Bandi, L. J. Mathias, D. A. Schiraldi, Facile Processing of Clays into Organically-Modified Aerogels, AICHE J., Vol. 52(3), pp.1162-1168 (2006).

DOI: 10.1002/aic.10710

Google Scholar

[8] S. Bandi, M. Bell, D. A. Schiraldi"Temperature-Responsive Clay Aerogel Polymer Composites", Macromolecules, Vol. 38, pp.9216-20 (2005).

DOI: 10.1021/ma051698+

Google Scholar

[9] E. Arndt, M. D. Gawryla, D. A. Schiraldi; Elastic, low density epoxy-clay aerogel composites, J. Mater. Chem., Vol. 17, p.3525 (2007).

DOI: 10.1039/b704114d

Google Scholar

[10] K. A. Finlay, M. D. Gawryla, D. A. Schiraldi; Biologically Based Fiber-Reinforced Clay Aerogel Composites, J. Indust. Eng. Chem. Res., Vol 47, p.615 (2008).

DOI: 10.1021/ie0705406

Google Scholar

[11] M. D. Gawryla, M. Nezamzadeh, D. A. Schiraldi; Foam-like Materials from Abundant Natural Resources, Green Chemistry, Vol. 10, p.1078 (2008).

DOI: 10.1039/b807473a

Google Scholar

[12] M. D. Gawryla, L. Liu, J. Grunlan, D. A. Schiraldi, pH Tailoring Electrical and Mechanical Behavior of Polymer-Clay-Nanotube Aerogels, Macromolec. Rapid Commun., Vol. 30, pp.1669-73 (2009).

DOI: 10.1002/marc.200900229

Google Scholar

[13] M. D. Gawryla, D. A. Schiraldi Novel Absorbent Materials Created Via Ice Templating, Macromolec. Mater. Eng., Vol. 294, pp.570-4 (2009).

DOI: 10.1002/mame.200900094

Google Scholar

[14] J. R. Johnson III, J. Spikowski, D. A. Schiraldi, Mineralization of Clay/Polymer Aerogels: A Bio-inspired Approach to Composite Reinforcement, ACS Applied Materials & Interfaces, Vol. 6, pp.1305-9 (2009).

DOI: 10.1021/am9001919

Google Scholar

[15] M. D. Gawryla, O. van den Berg, C. Weder, D. A. Schiraldi, Clay Aerogel/Cellulose Whisker Nanocomposites: A Nanoscale Wattle and Daub, J. Mater. Chem, Vol. 19, pp.2118-24 (2009).

DOI: 10.1039/b823218k

Google Scholar

[16] S. R. Hostler, A. R. Abramson, M. D. Gawryla, S. A. Bandi, D. A. Schiraldi, Themal Conductivity of a Clay-Based Aerogel, International Journal of Heat and Mass Transfer, Vol. 52. pp.665-9 (2009).

DOI: 10.1016/j.ijheatmasstransfer.2008.07.002

Google Scholar