Atomic and Electronic Structure of Zinc and Copper Pyrovanadates with Negative Thermal Expansion

Article Preview

Abstract:

Zinc and copper pyrovanadates are promising materials for micro- and optoelectronics due to their negative coefficient of volume thermal expansion (NTE). Besides, solid solutions on the base of these compounds can be used to obtain grade materials with variable thermal coefficients. Thermal deformation of both Zn2V2O7 and Cu2V2O7 structures was studied. According to the structural data, NTE of these substances is provided by the zigzag shape of zinc (copper) chains alongside with stable distances between layers. The structural and electronic characteristics depending on temperature were studied for α-Zn2V2O7 and α-Cu2V2O7 by using the first principle method. Our results demonstrate that the lowest total energies corresponds to the structural parameters at 400° C and 200° C for α-Zn2V2O7 and α-Cu2V2O7, respectively. We predict that α- Zn2V2O7 is a semiconductor with the band gap of 1,5 эВ and the bottom of conduction band is determined by the vanadium 3d states with small addition of antibonding oxygen 2р-states. For α- Cu2V2O7, the lowest interband transitions correspond to energy of 1,6 eV and involve also the O2p and V 3d states.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

358-363

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.I. Krasnenko, L.V. Zolotukhina, L.I. Andrianova: Inorganic Materials. Vol 36, (2000) p.1226.

Google Scholar

[2] M.V. Rotermel, T.I. Krasnenko, S.A. Petrova, R.G. Zakharov: Russian Jornal of Inorganic Chemistry Vol. 54 (2009) p.22.

Google Scholar

[3] H. Holzer, et al.: J. Mater. Res. Vol. 14 (1999) p.780.

Google Scholar

[4] S. Yilmaz: Com. Sci. Technol. Vol. 62 (2002) p.1835.

Google Scholar

[5] J. S. O. Evans, W. I. F. David, and A. W. Sleight: Acta Crystallogr. Sect. B: Vol. 55 (1999) p.333.

Google Scholar

[6] A. W. Sleight: Solid State Mater. Sci. Vol. 3 (1998) p.128.

Google Scholar

[7] J. S. O. Evans, T. A. Mary, and A. W. Sleight, J. Solid State Chem.: Vol. 133 (1997) p.580.

Google Scholar

[8] N. Khosrovani, V. Korthuis, A. W. Sleight, and T. Vogt: Inorg. Chem. Vol. 35 (1996) p.485.

Google Scholar

[9] Y. Yamamura, N. Nakajima, and T. Tsuji: Solid State Commun. Vol. 114, (2000) p.453.

Google Scholar

[10] A.G. Nord, T. Stefanidis: Mater. Res. Bull. T. 20 Vol. 7 (1985) p.845.

Google Scholar

[11] S. A. Petrova, R.G. Zakharov, M.V. Rotermel', et al.: Dokl. Akad. Nauk T. 400 Vol. 6 (2005) p.770.

Google Scholar

[12] D. Mercurio-Lavaud and B. Frit: C. R. Acad. Sci., Ser. C Vol. 277 (1973) p.1101.

Google Scholar

[13] C. Calvo and R. Faggiani: Acta Crystallogr. Sect. Vol. 24, (1975) p.603.

Google Scholar

[14] D. de Waal and C. Hutter: Mater. Res. Bull. Vol. 29 (8), (1994) p.843.

Google Scholar

[15] J. Laugier and B. Bochu, LMGP: Suite of Programs for the Interpretation of X-ray Experiments (ENSP/Laboratoire des Materiaux et du Genie Physique), http: /www. inpg. fr/LMGP and http: /www. ccp14. ac. uk/tutorial/lmgp.

Google Scholar

[16] Kresse G., Hafner: J. Phys. Rev. B, Vol. 47 (1993) p.558.

Google Scholar

[17] Kresse G., Furthmuller:J. Phys. Rev. B, Vol. 54, (1996) p.11169.

Google Scholar

[18] Perdew J.P., Burke K., Ernzerhof M.: Phys. Rev. Lett. Vol. 77(1996) p.3865.

Google Scholar

[19] Benko F.A., Koffyberg F.P.: Can.J. Phys. Vol. 70(1992) p.99.

Google Scholar

[20] He Z., Ueda Y.: Phys. Rev. Bvol. 77(2008) p.052402.

Google Scholar

[21] L. A. Ponomarenko, A.N. Vasil'ev, E. V. Antipov, and Y. A. Velikodny: Physica B (2000) p.284.

Google Scholar