Defect Crystal Structure of Low Temperature Modifications of Li2MO3 (M=Ti, Sn) and Related Hydroxides

Article Preview

Abstract:

Crystal structures of Li2MO3 (M=Sn, Ti) and TiO(OH)2 have been studied in detail and refined using X-ray powder diffraction data. All compounds posses a high concentration of defects in the structure. The crystal structures of the Li2MO3 salts obtained at 700°C reveal stacking faults of LiM2 metal layers, which leads to the appearance of short-range order in three possible space groups: C2/c, C2/m, P3112. The possibility to stabilize this imperfect state increases the mobility of the Li+ ions in the Li2TiO3 structure and allows the complete exchange of lithium by hydrogen in acid water solutions with formation of TiO(OH)2. The crystal structure of TiO(OH)2 belongs to the layered double hydroxide structure type with the 3R1 sequence of oxygen layers and can be described as a stacking of charge-neutral metal oxyhydroxide slabs [(OH)2OTi2O(OH)2].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

352-357

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Miller, H.B. Hamilton and J.D. Sullevan: J. Nuclear Mat. Vol. 215 (1994), p.877.

Google Scholar

[2] C. Alvani, S. Casadio, V. Contini, A. Di Bartolomeo, J.D. Lulewicz and N. Roux: J. Nucl. Mater. Vol. 307-311 (2002), p.837.

DOI: 10.1016/s0022-3115(02)01119-4

Google Scholar

[3] T. Kinjyo, M. Nishikawa, M. Enoeda and S. Fukada: Fusion Eng. Des. Vol. 83 (2008), p.580.

Google Scholar

[4] D. Kovacheva and K. Petrov: Solid State Ionics Vol. 109 (1998), p.327.

Google Scholar

[5] T.A. Denisova: International Scientific Journal for Alternative Energy and Ecology, Vol. 3 (2007), p.39.

Google Scholar

[6] T.A. Denisova, L.G. Maksimova, E.V. Polyakov, N.A. Zhuravlev, S.A. Kovyazina, O.N. Leonidova, D.F. Khabibulin and E.I. Yureva: Russ. J. Inorg. Chem. Vol. 51 (2006), p.691.

DOI: 10.1134/s0036023606050019

Google Scholar

[7] G.V. Lang: Z. Anorg. Allg. Chem. Vol. 348 (1966), p.246.

Google Scholar

[8] Von M. Trömel and J. Hauck: Z. Anorg. Allg. Chem. Vol. 373 (1970), p.8.

Google Scholar

[9] J.L. Hodeau, M. Marezio, A. Santoro and R.S. Roth: J. Solid State Chemistry Vol. 45 (1982), p.170.

Google Scholar

[10] G. Izquierdo and A.R. West: Mater. Res. Bull. Vol. 15 (1980), p.1655.

Google Scholar

[11] C. Gicquel, M. Mayer and R. Bouaziz: Compt. Rend. (Paris) Ser. C, Vol. 275 (1972), p.1427.

Google Scholar

[12] J.F. Dorrian and R.E. Newnham: Mater. Res. Bull. Vol. 4 (1969), p.179.

Google Scholar

[13] K. Kataoka, Y. Takahashi, N. Kijima, H. Nagai, J. Akimoto, Y. Idemoto and K. Ohshima: Mater. Res. Bull. Vol. 44 (2009), p.168.

Google Scholar

[14] T. Hoshino, K. Tanaka, J. Makita and T. Hashimoto: J. Nucl. Mater. Vol. 367-370 (2007), p.1052.

Google Scholar

[15] D.J.D. Concoran, D.P. Tunstall and J.T.S. Irvine: Solid State Ionics Vol. 136-137 (2000), p.297.

Google Scholar

[16] A. Le Bail and J.L. Fourquet: Mater. Res. Bull. Vol. 27 (1992), p.75.

Google Scholar

[17] H. Izawa, S. Kikkawa and M. Koizumi: J. Phys. Chem. Vol. 86 (1982), p.5023.

Google Scholar

[18] Y.V. Baklanova: Magn. Reson. Solids Vol. 10 (2008), p.39.

Google Scholar

[19] K. Yawata: Research report of Tsuruoka national college of technology Vol. 41 (2006), p.53.

Google Scholar

[20] R.B. Neder and T. Proffen: Diffuse scattering and defect structure simulation (Oxford University Press, New York, 2008).

Google Scholar

[21] A.C. Larson and R.B. Von Dreele: General Structure Analysis System-GSAS (Los Alamos National Laboratory Report LAUR 86-748, 2000).

Google Scholar

[22] J. Breger, M. Jiang, N. Dupre, Y.S. Meng, Y. Shao-Horn, G. Ceder and C.P. Grey: J. Solid State Chem. Vol. 178 (2005), p.2575.

Google Scholar

[23] A.V. Radna, C. Shivakumara and P. Vishnu Kamath: Clays Clay Miner. Vol. 53 (2005), p.520.

Google Scholar