Microwave Assisted Solvothermal Synthesis and Visible Light Photocatalytic Properties of Nb and N Co-Doped SrTiO3 Nanoparticles

Article Preview

Abstract:

Niobium and nitrogen co-doped SrTiO3 possessing excellent visible light responsive photocatalytic activity was successfully synthesized by microwave-assisted solvothermal reaction using SrCl2.6H2O, Ti(OC3H7)4, NbCl5 and hexamethylenetetramine in KOH aqueous solution. The photocatalytic activity was determined by DeNOx ability using LED lamps with the wavelengths of 627 nm (red), 530 nm (green), 445 nm (blue) and 390 nm (UV). The photocatalytic activity of SrTiO3 for DeNOx ability in visible light region could be improved by co-doping Nb5+ and N3-. The excellent visible light photocatalytic activity of this substance may be due to the generation of a new band gap that enables to absorb visible light and decrease in the lattice defects which acts as a recombination center of photoinduced electrons and holes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

52-57

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.D. Sun, A. Nakajima, A. Fujishima, T. Watanabe and K. Hashimoto: J. Phys. Chem. B Vol. 105 (2001), p. (1984).

Google Scholar

[2] M. Miyauchi, A. Nakajima, T. Watanabe and K Hashimoto: Chem. Mater. Vol. 14 (2002), p.2815.

Google Scholar

[3] N. Sepone and J.M. Hermann: Langmuir Vol. 10 (1994), p.693.

Google Scholar

[4] W. Choi, A. Termin and M.J. Hoffmann: Phys. Chem. Vol. 97 (1994), p.13669.

Google Scholar

[5] R. Asahi, T. Morikawa, K. Aoki and Y. Taga: Science Vol. 293 (2001), p.269.

Google Scholar

[6] H. Irie, Y. Watanabe and K. Hashimoto: J. Phys. Chem. B Vol. 107 (2003), p.5483.

Google Scholar

[7] T. Umebayashi, T. Yamaki, S. Tanaka and K. Asai: Chem. Lett. Vol. 32 (2003), 330.

Google Scholar

[8] T. Ohno, T. Mitsui and M. Matsumura: Chem. Lett. Vol. 32 (2003), p.364.

Google Scholar

[9] I. Nakamura, N. Negishi, S. Kutsuna and T. Ihara, S. Sugihara and K. Takeuchi: J. Mol. Catal. A Vol. 161 (2000), p.205.

Google Scholar

[10] D. Chen, X. Jiao and M. Zhang: J. Eur. Ceram. Soc. Vol. 20 (2000), p.1261.

Google Scholar

[11] R.M. Piticescu, P. Vilarnho, L.M. Popescu and R.R. Piticescu: J. Optoelectron Adv. Mater. Vol. 8 (2006), p.543.

Google Scholar

[12] R. Wendelbo, D.E. Akporiaye, A. Karlsson, M. Plassen and A. Olafsen: J. Eur. Ceram. Soc. Vol. 26 (2006), p.849.

Google Scholar

[13] F.A. Rabuffetti, H.S. Kim, J.A. Enterkin, Y. Wang, C.H. Lanier, L.D. Marks and K.R. Poeppelmeier: P.C. Chem. Mater. Vol. 20 (2008), p.5628.

Google Scholar

[14] Shu Yin, Bin Liu, Peilin Zhang, Takeshi Morikawa, Ken-ichi Yamanaka and Tsugio Sato: J. Phys. Chem. C Vol. 112 (2008), p.12425.

Google Scholar

[15] J. Wang, S. Yin, M. Komatsu and T. Sato: J. Eur. Ceram. Soc. Vol. 25 (2005), p.3207.

Google Scholar

[16] S. Martınez-Mendez, Y. Henrıquez, O. Domınguez, L. D'Ornelas and H. Krentzien: J. Mol. Cat. A Vol. 252 (2006), p.226.

Google Scholar

[17] M. Ziolek and I. Nowak: Catal. Today Vol. 78 (2003), p.543.

Google Scholar

[18] R.E. Tanner, Y. Liang and E.I. Altman: Surface Science Vol. 506 (2002), p.251.

Google Scholar

[19] M.Z. Atashbar, H.T. Sun, B. Gong, W. Wlodarski and R. Lam: Thin Solid Films Vol. 326 (1998), p.238.

Google Scholar

[20] T. Torimoto, Fox RJ and Fox MA: J. Electrochem. Soc. Vol. 11 (1996), p.3712.

Google Scholar