Densification Mechanism of MgAl2O4 Spinel during Spark-Plasma-Sintering

Article Preview

Abstract:

The densification mechanism during the park-plasma-sintering (SPS) processing was examined in high purity MgAl2O4 spinel. As the density ρt increases, that is, as the effective stress σeff decreases, stress exponent n evaluated from σeff dependence of densification rate varies from n ≥ 4 in the low ρt region, n ≈ 2 in the intermediate ρt region to n ≈ 1 in the high ρt region. TEM observation shows that significant stacking faults caused by partial dislocations are observed in the low ρt region, but limited in the high ρt region. The ρt dependent densification behavior and microstructure suggest that the predominant densification mechanism during the SPS processing changes with ρt from plastic flow by partial dislocation motion for the low ρt region (n ≥ 4) to diffusion-related creep for the high ρt region (n ≈ 1).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-67

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci., Vol. 41 (2006), p.763.

Google Scholar

[2] R. Orrù, R. Licheri, A. M. Locci, A. Cincotti and G. Cao: Mat. Sci. Eng. R, Vol. 63 (2009), p.127.

Google Scholar

[3] R. Chaim and M. Margulis: Mat. Sci. Eng. A, Vol. 407 (2005), p.180.

Google Scholar

[4] K. Morita, B. -N. Kim, K. Hiraga and H. Yoshida: Scripta Mater. Vol. 58 (2008), p.1114.

Google Scholar

[5] K. Morita, B. -N. Kim, K. Hiraga and H. Yoshida: J. Am. Ceram. Soc. Vol. 92 (2009), p.1208.

Google Scholar

[6] K. Morita, B. -N. Kim, K. Hiraga and H. Yoshida: to be submitted to Scripta Mater.

Google Scholar

[7] G. Bernard-Granger, N. Benameur, A. Addad, M. Nygren, C. Guizard and S. Deville: J. Mater. Res. Vol. 24 (2009), p. (2011).

DOI: 10.1557/jmr.2009.0243

Google Scholar

[8] C. –J Ting and H. –Y. Lu: Acta Mater. Vol. 47 (1999), p.817.

Google Scholar

[9] R. L. Coble: J. Appl. Phys. Vol. 41 (1970), p.4798.

Google Scholar

[10] M. N. Rahaman: Sintering of Ceramics (Taylor & Francis Group, CRC Press, (2008).

Google Scholar

[11] A. S. Helle, K. E. Easterling and M. F. Ashby: Acta Mater. Vol. 33 (1985), p.2163.

Google Scholar

[12] D. C. C. Lam, F. F. Lange and A. G. Evans: J. Am. Ceram. Soc. Vol. 77 (1999), p.2113.

Google Scholar

[13] K. W. White and G. P. Kelkar: J. Am. Ceram. Soc. Vol. 75 (1992), p.3440.

Google Scholar

[14] T. E. Mitchell: J. Am. Ceram. Soc. Vol. 82 (1999), p.3305.

Google Scholar

[15] K. Morita, B. -N. Kim, K. Hiraga and H. Yoshida: to be submitted.

Google Scholar

[16] D. R. Pummler and H. Palmour III: J. Am. Ceram. Soc. Vol. 51 (1968), p.320.

Google Scholar

[17] R. J. Bratton, G. R. Terwilliger and S. M. Ho: J. Mat. Sci. Vol. 7 (1972), p.1363.

Google Scholar

[18] C. -J. Ting and H. -Y. Lu: Acta Mater. Vol. 47 (1999), p.831.

Google Scholar

[19] H. Conrad: Mat. Sci. Eng. A Vol. 287 (2000), p.276.

Google Scholar

[20] H. Conrad and D. Yang: Acta Mater. Vol. 48 (2000), p.4045.

Google Scholar