Photocatalytic Efficiency of ZnO/TiO2 Composite Plates in Degradation of RR180 Dye Solutions

Article Preview

Abstract:

Tape casting method was used to prepare ZnO/TiO2 composite plates for photocatalytic degradation of Reactive Red 180 (RR 180) textile dyes in aqueous solutions. TiO2 content of the plates was selected as 20 mol%. The final sintering temperature of the plates is 700°C. The sintering temperature of 700°C was selected to obtain relatively high surface area of the plates which enhances the photocatalytic activity in the degradation processes. The plates were characterized by using TG-DTA, BET, XRD and SEM. The efficiencies of the composite plates during the degradation of the RR180 dye were determined using the laboratory-scale quartz photoreactor under UVA light irradiation. Over 97% color removal efficiency was obtained in 150min process time for the dye solution at 50 mg/L concentration. Efficient reuse of plates indicated that the successful photocatalytic degradation was maintained after three consecutive runs. The addition of TiO2 is found to increase the photocatalytic activity of the ZnO plates in degradation of the selected dye from water, however, the pure ZnO plates sintered at the same temperature yielded less color removal efficiency for the same dye solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

244-250

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Van Gerven, G. Mul, J. Moulijn, A. Stankiewicz, Chemical Engineering and Processing 46 (2007) 781-789.

DOI: 10.1016/j.cep.2007.05.012

Google Scholar

[2] K. Kabra, R. Chaudhary, R. L. Sawhney, Industrial & Engineering Chemistry Research 43 (2004) 7683-7696.

Google Scholar

[3] M. A. Hasnat, M. M. Uddin, A. J. F. Samed, S. S. Alam, S. Hossain, Journal of Hazardous Materials 147 (2007) 471-477.

DOI: 10.1016/j.jhazmat.2007.01.040

Google Scholar

[4] A. Akyol, M. Bayramoglu, Journal of Hazardous Materials 175 (2010) 484-491.

Google Scholar

[5] D. S. Bhatkhande, V. G. Pangarkar, A. Beenackers, Journal of Chemical Technology and Biotechnology 77 (2002) 102-116.

Google Scholar

[6] V. Augugliaro, M. Litter, L. Palmisano, J. Soria, Journal of Photochemistry and Photobiology C-Photochemistry Reviews 7 (2006) 127-144.

DOI: 10.1016/j.jphotochemrev.2006.12.001

Google Scholar

[7] S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco, W. Gernjak, Catalysis Today 147 (2009) 1-59.

Google Scholar

[8] E. S. Elmolla, M. Chaudhuri, Journal of Hazardous Materials 173 (2010) 445-449.

Google Scholar

[9] M. Anpo, M. Takeuchi, Journal of Catalysis 216 (2003) 505-516.

Google Scholar

[10] P. R. Gogate, A. B. Pandit, Advances in Environmental Research 8 (2004) 553-597.

Google Scholar

[11] U. I. Gaya, A. H. Abdullah, Journal of Photochemistry and Photobiology C-Photochemistry Reviews 9 (2008) 1-12.

Google Scholar

[12] D. Robert, S. Malato, Science of the Total Environment 291 (2002) 85-97.

Google Scholar

[13] H. C. Yatmaz, A. Akyol, M. Bayramoglu, Industrial & Engineering Chemistry Research 43 (2004) 6035-6039.

Google Scholar

[14] W. L. Kostedt, A. A. Ismail, D. W. Mazyck, Industrial & Engineering Chemistry Research 47 (2008) 1483-1487.

Google Scholar

[15] S. Janitabar-Darzi, A. R. Mahjoub, Journal of Alloys and Compounds 486 (2009) 805-808.

Google Scholar

[16] J. T. Tian, J. F. Wang, J. H. Dai, X. Wang, Y. S. Yin, Surface & Coatings Technology 204 (2009) 723-730.

Google Scholar

[17] M. R. Vaezi, Journal of Materials Processing Technology 205 (2008) 332-337.

Google Scholar

[18] Y. Zhao, C. Li, X. Liu, F. Gu, H. L. Du, L. Shi, Applied Catalysis B: Environmental 79 (2008) 208-215.

Google Scholar

[19] C. Bluthardt, C. Fink, K. Flick, A. Hagemeyer, M. Schlichter, A. Volpe Jr, Catalysis Today 137 (2008) 132-143.

DOI: 10.1016/j.cattod.2008.04.045

Google Scholar

[20] E. Furimsky, F. E. Massoth, Catalysis Today 52 (1999) 381-495.

Google Scholar

[21] K. E. Kim, S. -R. Jang, J. Park, R. Vittal, K. -J. Kim, Solar Energy Materials and Solar Cells 91 (2007) 366-370.

DOI: 10.1016/j.solmat.2006.10.010

Google Scholar

[22] J. G. Lu, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, S. Fujita, Journal of Crystal Growth 299 (2007) 1-10.

Google Scholar

[23] J. J. Lee, Surface and Coatings Technology 200 (2005) 31-34.

Google Scholar

[24] K. Hirano, M. Fujita, M. Sasajima, T. Kosaka, Y. Horikoshi, Journal of Crystal Growth 301-302 (2007) 370-372.

DOI: 10.1016/j.jcrysgro.2006.11.282

Google Scholar

[25] Y. Yamaguchi, M. Yamazaki, S. Yoshihara, T. Shirakashi, Journal of Electroanalytical Chemistry 442 (1998) 1-3.

Google Scholar

[26] D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy, V. I. Pârvulescu, Applied Catalysis B: Environmental 25 (2000) 83-92.

DOI: 10.1016/s0926-3373(99)00123-x

Google Scholar

[27] M. Miki-Yoshida, V. Collins-Martinez, P. Amezaga-Madrid, A. Aguilar-Elguezabal, Thin Solid Films 419 (2002) 60-64.

DOI: 10.1016/s0040-6090(02)00786-1

Google Scholar

[28] J. Tian, L. Chen, Y. Yin, X. Wang, J. Dai, Z. Zhu, X. Liu, P. Wu, Surface and Coatings Technology 204 (2009) 205-214.

Google Scholar

[29] E. Rego, J. Marto, P. S. Marcos, J. A. Labrincha, Applied Catalysis a-General 355 (2009) 109-114.

Google Scholar

[30] A. A. Aal, M. A. Barakat, R. M. Mohamed, Applied Surface Science 254 (2008) 4577-4583.

Google Scholar

[31] E. YassItepe, H. C. Yatmaz, C. Öztürk, K. Öztürk, C. Duran, Journal of Photochemistry and Photobiology A: Chemistry 198 (2008) 1-6.

Google Scholar

[32] D. Qian, L. Gerward, J. Z. Jiang, Journal of Materials Science 39 (2004) 5389-5392.

Google Scholar