Etch Rate and Dimensional Accuracy of Machinable Glass Ceramics in Chemical Etching

Article Preview

Abstract:

Machinable glass ceramic (MGC) is well known in the micro-electromechanical system and semiconductor industry. Chemical etching is used in this experiment to study the performance of MGC. The etching rate of MGC and its accuracy by indentation method is studied. The categoric parameter applied here is the type of chemical etchant used: hydrochloric (HCl), hydrophosphoric (H3PO4) and hydrobromic (HBr) acids; and, numerical parameters are etching temperature and etching solution. The experimental investigation that was carried out is governed by design of experiment (DoE).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-256

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. N. Katz: Mater. Sci. and Eng. A Vol. 71 (1985), pp.227-249.

Google Scholar

[2] L. Trutna, P. Spagon, T. Moore, S. Hartlye, and A. Hurwitz, in: Engineering Statistics Handbook, C. Croarkin and P. Tobias, Eds.: NIST (2003).

Google Scholar

[3] J. Y. Thompson, S. C. Bayne, and H. O. Heymann: The Journal of Prosthetic Dentistry Vol. 76 (1996), pp.619-623.

Google Scholar

[4] A. Guedes, A. M. P. Pinto, M. Vieira, and F. Viana: Mater. Sci. and Eng. A Vol. 301 (2001), pp.118-124.

Google Scholar

[5] J. R. Sun, C. F. Yeung, K. Zhao, H. K. Wong, C. M. Xiong, and B. G. Shen: Physica B Vol. 334 (2003), pp.310-316.

Google Scholar

[6] D. C. S. Bien, P. V. Rainey, S. J. M. Mitchel, and H. S. Gamble: Journal of Microelectromech. Syst. Vol. 13 (2003), p. S34-S40.

Google Scholar

[7] H. Maki, T. Ikoma, I. Sakaguchi, N. Ohashi, H. Haneda, J. Tanaka, and N. Ichinose: Thin Solid Films Vol. 411 (2002), pp.91-95.

DOI: 10.1016/s0040-6090(02)00194-3

Google Scholar

[8] T. Corman, P. Enoksson, and G. Stemme: Journal of Micromech. Microeng. Vol. 8(1998), pp.35-39.

Google Scholar

[9] Y. Saito, S. Okamoto, A. Miki, H. Inomata, T. Hidaka, and H. Kasai: Applied Surf. Sci. Vol. 254 (2008), pp.7243-7247.

Google Scholar

[10] Y. Saito, S. Okamoto and J. Kurachi: Applied Surf. Sci. Vol. 255 (2008), pp.2290-2294.

Google Scholar

[11] Y. saito, S. Okamoto, I. Inomata, J. Kuranchi, T. Hidaka, and H. Kasai: Thin Solid Films Vol. 517 (2008), pp.2900-2904.

DOI: 10.1016/j.tsf.2008.11.077

Google Scholar

[12] C. G. K. S.W. Youn: Scripta Materialia Vol. 52 (2005), pp.117-122.

Google Scholar

[13] A. F. Tehrani and E. Imanian: Journal of Mater. Processing Tech. Vol. 149 (2008), pp.404-408.

Google Scholar

[14] P. L. Houston, in Chemical kinetics and reaction dynamics, volume. 1 of McGraw-Hill (2001).

Google Scholar

[15] E. Makino, T. Shibata, and Y. Yamada: Sensors and Actuators A Vol. 75 (1999), pp.278-288.

Google Scholar

[16] K. R. Williams and R. S. Muller: Journal of Microelectromech. Syst. Vol. 5 (1996), pp.256-269.

Google Scholar

[17] N. Prudhomme, D. Cacahu-Herreillat, P. Papet, and O. Cambon: Proceeding of 2003 IEEE International Frequency Control Symposium and PDA Exhibition (2003), pp.688-693.

DOI: 10.1109/freq.2003.1275175

Google Scholar

[18] Y. Hua: Proceeding in International Conference on Software (1998), pp.20-26.

Google Scholar

[19] F. Gaiseanu, D. Tsoukalas, J. Esteve, C. Postolache, D. Goustouridis, and E. Tsoi: Proceeding of 1997 IEEE Semiconductor Conference Vol. 1 (1997), pp.247-250.

DOI: 10.1109/smicnd.1997.651590

Google Scholar

[20] K. R. Williams, K. Gupta, and M. Wasilik: Journal of Microelectromech. Syst Vol. 12 (2003), pp.761-778.

Google Scholar

[21] S. G. Cook, J. A. Little, and J. E. King: Materials Characterization Vol. 34 (1995), pp.1-8.

Google Scholar