High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyser Cells (SOEC)

Article Preview

Abstract:

Metal supported cells as developed at DLR for use as solid oxide fuel cells by applying plasma deposition technologies were investigated in operation of high temperature steam electrolysis. The cells consisted of a porous ferritic steel support, a diffusion barrier layer, a Ni/YSZ fuel electrode, a YSZ electrolyte and a LSCF oxygen electrode. During fuel cell and electrolysis operation the cells were electrochemically characterised by means of i-V characteristics and electrochemical impedance spectroscopy measurements including a long-term test over 2000 hours. The results of electrochemical performance and long-term durability tests of both single cells and single repeating units (cell including metallic interconnect) are reported. During electrolysis operation at an operating temperature of 850 °C a cell voltage of 1.28 V was achieved at a current density of -1.0 A cm-2; at 800 °C the cell voltage was 1.40 V at the same operating conditions. The impedance spectra revealed a significantly enhanced polarisation resistance during electrolysis operation compared to fuel cell operation which was mainly attributed to the hydrogen electrode. During a long-term test run of a single cell over 2000 hours a degradation rate of 3.2% per 1000 hours was observed for operation with steam content of 43% at 800 °C and a current density of -0.3 Acm-2. Testing of a single repeating unit proved that a good contacting of cell and metallic interconnect is of major importance to achieve good performance. A test run over nearly 1000 hours showed a remarkably low degradation rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-143

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Divisek, H. Wendt (1990), in: Electrochemical Hydrogen Technologies, edited by H. Wendt, Elsevier, Amsterdam (1990).

Google Scholar

[2] W. Kreuter, H. Hofmann, in: Hydrogen Energy Progress XI, edited by T.N. Veziroglu, C.J. Winter, J.P. Baselt, G. Kreysa, International Association for Hydrogen Energy (1996).

Google Scholar

[3] H. Janssen, B. Emonts, H.G. Groehn, H. Mai, R. Reichel, D. Stolten: HYPOTHESIS IV Vol. 1 (2001), p.172.

Google Scholar

[4] G. Schiller, R. Henne, P. Mohr, V. Peinecke: Int. J. Hydrogen Energy Vol. 23(9) (1998), p.761.

Google Scholar

[5] M. Mogensen, C. Bagger: Proc. 1998 Fuel Cell Seminar Palm Springs, CA, USA (1998), p.96.

Google Scholar

[6] M. Mogensen, S.H. Jensen, A. Hauch, I. Chorkendorff, T. Jacobsen: Proc. 7th European SOFC Forum Lucerne (2006), PO301.

Google Scholar

[7] W. Dönitz, R. Schmidberger, E. Steinheil, R. Streicher: Int. J. Hydrogen Energy Vol. 5(1) (1980), p.55.

Google Scholar

[8] W. Dönitz, E. Erdle: Int. J. Hydrogen Energy Vol. 10(5) (1985), p.291.

Google Scholar

[9] W. Dönitz, E. Erdle, in: Electrochemical Hydrogen Energy Technologies, Electrochemical Production and Combustion of Hydrogen, edited by H. Wendt, Elsevier, Amsterdam (1990).

Google Scholar

[10] E. Erdle, W. Dönitz, R. Schramm, A. Koch: Int. J. Hydrogen Energy Vol. 17(10) (1992), p.817.

Google Scholar

[11] A.O. Isenberg: Solid State Ionics Vol. 3-4 (1981), p.431.

Google Scholar

[12] J. Hartvigsen, S. Elangovan, J.E. O'Brien, C.M. Stoots, J.S. Herring, P. Lessing: Proc. 6th European SOFC Forum Lucerne (2004), p.378.

Google Scholar

[13] J.E. O'Brien, C.M. Stoots, J.S. Herring, J. Hartvigsen: J. Fuel Cell Science and Technol. Vol. 3(2) (2006), p.213.

Google Scholar

[14] H.S. Hong, U. Chae, S.T. Choo, K.S. Lee: J. of Power Sources Vol. 149 (2005), p.84.

Google Scholar

[15] W.S. Wang, Y.Y. Huang, S.W. Jung, J.M. Vohs, R.J. Gorte: J. of the Electrochem. Soc. Vol. 153(11) (2006), p. A2066.

Google Scholar

[16] H. Uchida, N.N. Osada, M. Watanabe: Solid-State Letters Vol. 7(12) (2004), p. A500.

Google Scholar

[17] N.N. Osada, H. Uchida, M. Watanabe: J. of the Electrochem. Soc. Vol. 153(5) (2006), p. A816.

Google Scholar

[18] A. Brisse A, M. Mogensen, G. Schiller, U. Vogt, M. Zahid: Proc. 17th World Hydrogen Energy Conference (WHEC2008) Brisbane, Australia (2008).

Google Scholar

[19] Information on http: /www. relhy. eu.

Google Scholar

[20] R.H. Henne, T. Franco, R. Ruckdäschel: J. Therm. Spray Technol. Vol. 15(4) (2006), p.695.

Google Scholar

[21] T. Franco, Z. HoshiarDin, P. Szabo, M. Lang, G. Schiller: Journal of Fuel Cell Science and Technology Vol. 4(4) (2007), p.406.

Google Scholar

[22] T. Franco, K. Schibinger, Z. Ilhan, G. Schiller, A. Venskutonis: Proc. 10th International Symposium on Solid Oxide Fuel Cells (SOFC-X) Nara, Japan (2007), electronic paper.

Google Scholar

[23] A.A. Syed, Z. Ilhan, J. Arnold, G. Schiller, H. Weckmann: J. Therm. Spray Technol. Vol. 15(4) (2006), p.617.

Google Scholar

[24] S.A. Ansar, Z. Ilhan, W. Richter: High Temp. Mater. Process. Vol. 11(1) (2007), p.83.

Google Scholar

[25] S.A. Ansar, Z. Ilhan: MRS Spring Meeting San Francisco USA (2007), electronic paper.

Google Scholar

[26] D. Wiedenmann, U.F. Vogt, C. Soltmann, O. Patz, G. Schiller, B. Grobety: Fuel Cells Vol. 9(6) (2009), p.861.

Google Scholar