Hydrogen Desorption Reactions of the Na-Mg-B-H System

Article Preview

Abstract:

Hydrogen storage in the solid state has shown increasing research and development, and recently an approach in mixing two hydride systems together by ball milling (reactive hydride composites) has been investigated in more detail, e.g. NaBH4 plus MgH2. Thermodynamic destabilization may occur by new compounds formation during dehydrogenation, e.g. MgB2. A study of the the role of O2/H2O contamination for the reaction 2NaBH4 + MgH2 ↔ 2NaH + MgB2 + 4H2 was conducted using in-situ X-ray powder diffraction. Desorption reaction is observed to begin by a competition of MgH2 and NaBH4 decomposition due to higher reactivity promoted by ball milling processing summed to O2/H2O contamination. Oxidation of NaBH4 into NaBO2 is observed to happen in higher degree than MgH2/Mg into MgO for the Na-Mg-B-H system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

164-169

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Zuttel, A. Borgschulte, L. Schlapbach: Hydrogen as Future Energy Carrier (Wiley-VCH, Weinheim, 2008) p.165.

DOI: 10.1007/s10800-008-9585-4

Google Scholar

[2] J.J. Vajo, F. Mertens, C.C. Ahn, R.C. Bowman, and B. Fultz: J. Phys. Chem. B 108 (2004) pp.13977-83.

Google Scholar

[3] G. Barkhordarian, T. Klassen, M. Dornheim, and R. Bormann: J. Alloys Compd. 440 (2007) L18-L21.

DOI: 10.1016/j.jallcom.2006.09.048

Google Scholar

[4] Y. Kojima and T. Haga: Int. J. Hydrogen Energy 28 (2003) pp.989-93.

Google Scholar

[5] Z. Li, J. Alloys Compd. 349 (2003) pp.232-36.

Google Scholar

[6] V. Drozd, S. Saxena, S. V. Garimella, A. Durygin: Int. J. Hydrogen Energy 32 (2007) pp.3370-75.

Google Scholar

[7] R.A. Varin, Ch. Chiu, J. Alloys Compd. 397 (2005) pp.276-81.

Google Scholar

[8] Stasinevich, G. A. Egorenko: Russian Journal of Inorganic Chemistry, 13 (1969) pp.341-3.

Google Scholar

[9] J. Urgnani, F.J. Torres, M. Palumbo, M. Baricco: Int. J. Hydrogen Energy 33 (2008) pp.3111-15.

Google Scholar

[10] J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, J. Alloys Compd. 293-295 (1999) pp.495-500.

DOI: 10.1016/s0925-8388(99)00474-0

Google Scholar

[11] T. Czujko, R. A. Varin, Z. Wronski, Z. Zaranski, T. Durejko: J. of Alloys and Compd. 427 (2007) pp.291-9.

DOI: 10.1016/j.jallcom.2006.03.020

Google Scholar

[12] R. A. Varin, T. Czujko, Z. Wronski: Nanomaterials for solid state hydrogen storage (Springer, USA 2009) p.270.

DOI: 10.1007/978-0-387-77712-2

Google Scholar

[13] O. Friedrichs, J. C. Sanchez-Lopez, C. Lopez-Cartes, M. Dornheim, T. Klassen, R. Bormann, A. Fernandez: App. Surf. Science 252 (2006) pp.2334-45.

Google Scholar

[14] F. Leardini, J. R. Ares, J. Bodega, J. F. Fernandez, I. J. Ferrer, C. Sanchez: Phys. Chem. Chem. Phys. 12 (2010) pp.572-7 and references therein.

Google Scholar

[15] A. Borgschulte, M. Bielmann, A. Zuttel, G. Barkhordarian, M. Dornheim, R. Bormann: App. Surf. Sci. 254 (2008) pp.2377-84.

Google Scholar

[16] A. G. Ostroff, R. T. Sanderson: J. Inorg. Nucl. Chem. 4 (1957) pp.230-1.

Google Scholar

[17] L. Lutterotti, S. Matthies, H. -R. Wenk, A. J. Schulz, J. Richardon, J. of Apply. Phys. 81 (1997) pp.594-600. MAUD is available at http: /www. ing. unitn. it/~maud.

Google Scholar

[18] U. Demirci, P. Miele: Energy & Environmental Science 2 (2009) pp.627-37.

Google Scholar

[19] V. Mikheeva, V. Breitsis, V. A. Kuznetsov, O. N. Kryukova; Dokl. Akad. Nauk SSSR 187 (1969) 103-5.

Google Scholar

[20] D. Pottmaier, S. Garroni, M. Brunelli, G. Vaughan, A. Castellero, E. Menendez, M. D. Baro, M. Baricco: Mat. Res. Soc. Symp. Proc. 1262 (2010) W03-04.

Google Scholar

[21] D. Pottmaier, C. Pistidda, E. Groppo, S. Bordiga, G. Spoto, M. Baricco: submitted to Int. J. of Hydrogen Energy (2010).

DOI: 10.1016/j.ijhydene.2011.01.059

Google Scholar