Intermediate Band Solar Cells

Article Preview

Abstract:

Intermediate band (IB) solar cells aim to exploit in solar cells the energy of below bandgap energy photons. They are based in a material that, in addition to the conventional conduction and valence bands, has an electronic band (named intermediate band) located inside the bandgap and separated from the conduction and valence band by a null density of states. The theoretical limiting efficiency of these cells (63.2 % at maximum concentration) is equivalent to a triple junction solar cell but requiring a single material instead. Several approaches are being followed worldwide to take to practice this concept that can be divided into two categories: quantum dots and bulk materials. This paper reviews the main experimental results obtained under both approaches.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-150

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Luque and A. Martí, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Physical Review Letters, vol. 78, p.5014–5017, (1997).

DOI: 10.1103/physrevlett.78.5014

Google Scholar

[2] A. Luque and A. Martí, A metallic intermediate band high efficiency solar cell, Progress in Photovoltaics: Res. Appl., vol. 9, p.73–86, (2001).

DOI: 10.1002/pip.354

Google Scholar

[3] E. Antolín, A. Martí, and A. Luque, Energy conversion efficiency limit of series connected intermediate band solar cells, in Proc. of the 21st European Photovoltaic Energy Conference, J. Poortmans, H. Ossenbrink, E. Dunlop, and P. Helm, Eds. Munich: WIP-Renewable Energies, 2006, pp.412-415.

DOI: 10.1016/b978-0-08-087872-0.00127-x

Google Scholar

[4] A. Martí, L. Cuadra, and A. Luque, Quantum dot intermediate band solar cell, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, 2000., pp.940-943, (2000).

DOI: 10.1109/pvsc.2000.916039

Google Scholar

[5] L. Cuadra, A. Marti, and A. Luque, Type II broken band heterostructure quantum dot to obtain a material for the intermediate band solar cell, Physica E: Low-dimensional Systems and Nanostructures, vol. 14, pp.162-165, (2002).

DOI: 10.1016/s1386-9477(02)00370-3

Google Scholar

[6] A. Martí, E. Antolin, C. R. Stanley, C. D. Farmer, N. Lopez, P. Diaz, E. Canovas, P. G. Linares, and A. Luque, Production of Photocurrent due to Intermediate-to-Conduction-Band Transitions: A Demonstration of a Key Operating Principle of the Intermediate-Band Solar Cell, Physical Review Letters, vol. 97, pp.247701-4, (2006).

DOI: 10.1103/physrevlett.97.247701

Google Scholar

[7] A. Luque, A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. J. Caballero, L. Cuadra, and J. L. Balenzategui, Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells, Applied Physics Letters, vol. 87, pp.083505-3, (2005).

DOI: 10.1063/1.2034090

Google Scholar

[8] A. Luque and A. Martí, The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept, Advanced Materials, vol. 22, pp.160-174, (2010).

DOI: 10.1002/adma.200902388

Google Scholar

[9] R. Strandberg and T. W. Reenaas, Photofilling of intermediate bands, Journal of Applied Physics, vol. 105, pp.124512-8, (2009).

DOI: 10.1063/1.3153141

Google Scholar

[10] A. Martí, E. Antolín, E. Cánovas, N. López, A. Luque, C. Stanley, C. Farmer, P. Díaz, C. Christofides, and M. Burhan, Progress in quantum-dot intermediate band solar cell research, in Proc. of the 21st European Photovoltaic Solar Energy Conference, J. Poortmans, H. Ossenbrink, E. Dunlop, and P. Helm, Eds. Munich: WIP-Renewable Energies, 2006, pp.99-102.

DOI: 10.1016/j.tsf.2005.12.122

Google Scholar

[11] G. Wei and S. R. Forrest, Intermediate-Band Solar Cells Employing Quantum Dots Embedded in an Energy Fence Barrier, Nano Letters, vol. 7, pp.218-222 , (2007).

DOI: 10.1021/nl062564s

Google Scholar

[12] A. Martí, C. R. Stanley, and A. Luque, Intermediate Band Solar Cells (IBSC) using nanotechnolgy, in Nanostructured Materials for Solar Energy Conversion T. Soga, Ed.: Elsevier, (2006).

DOI: 10.1016/b978-044452844-5/50018-4

Google Scholar

[13] I. Tobias, A. Luque, and A. Marti, Light intensity enhancement by diffracting structures in solar cells, Journal of Applied Physics, vol. 104, pp.034502-9, (2008).

DOI: 10.1063/1.2960586

Google Scholar

[14] A. Luque, A. Marti, M. J. Mendes, and I. Tobias, Light absorption in the near field around surface plasmon polaritons, Journal of Applied Physics, vol. 104, pp.113118-8, (2008).

DOI: 10.1063/1.3014035

Google Scholar

[15] M. J. Mendes, A. Luque, I. Tobias, and A. Marti, Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells, Applied Physics Letters, vol. 95, pp.071105-3, (2009).

DOI: 10.1063/1.3205470

Google Scholar

[16] A. Marti, N. Lopez, E. Antolin, E. Canovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Diaz, Emitter degradation in quantum dot intermediate band solar cells, Applied Physics Letters, vol. 90, pp.233510-3, (2007).

DOI: 10.1063/1.2747195

Google Scholar

[17] A. Luque, P. G. Linares, E. Antolín, E. Cánovas, C. D. Farmer, C. R. Stanley, and A. Martí, Multiple levels in intermediate band solar cells, Applied Physics Letters, vol. 96, pp.013501-3, (2010).

DOI: 10.1063/1.3280387

Google Scholar

[18] V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In, Ga)As/Ga(As, P) quantum dot solar cells, Phys. Rev. B, vol. 78, p.205321, (2008).

DOI: 10.1103/physrevb.78.205321

Google Scholar

[19] C. G. Bailey, S. M. Hubbard, D. V. Forbes, and R. P. Raffaelle, Evaluation of strain balancing layer thickness for InAs/GaAs quantum dot arrays using high resolution x-ray diffraction and photoluminescence, Applied Physics Letters, vol. 95, pp.203110-3, (2009).

DOI: 10.1063/1.3264967

Google Scholar

[20] S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, Effect of strain compensation on quantum dot enhanced GaAs solar cells, Applied Physics Letters, vol. 92, pp.123512-3, (2008).

DOI: 10.1063/1.2903699

Google Scholar

[21] S. M. Hubbard, C. G. Bailey, C. D. Cress, S. Polly, J. Clark, D. V. Forbes, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, SHORT CIRCUIT CURRENT ENHANCEMENT OF GaAs SOLAR CELLS USING STRAIN COMPENSATED InAs QUANTUM DOTS, Proc. of the 33th IEEE PVSC, (2008).

DOI: 10.1109/pvsc.2008.4922600

Google Scholar

[22] S. A. Blokhin, A. V. Sakharov, A. S. P. A. M. Nadtochy, M. V. Maximov, N. N. Ledentsov, A. R. Kovsh, S. S. Mikhrin, and V. M. Lantrat, AlGaAs/GaAs Photovoltaic Cells with an Array of InGaAs QDs, Semiconductors, vol. 43, pp.514-518, (2009).

DOI: 10.1134/s1063782609040204

Google Scholar

[23] R. Oshima, A. Takata, and Y. Okada, Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells, Applied Physics Letters, vol. 93, pp.083111-3, (2008).

DOI: 10.1063/1.2973398

Google Scholar

[24] Y. Okada, N. Shiotsuka, H. Komiyama, K. Akahane, and N. Ohtani, Multi-Stacking of Highly Uniform Self-Organized Quantum Dots for Solar Cell Applications, in Proc. of the 20th European Photovoltaic Solar Energy Conference Munich: WIP-Renewable Energies and ETA, 2005, pp.51-54.

Google Scholar

[25] A. M. Hennel, Transition metals in III/V compounds, in Imperfections in III/V materials. vol. 38, E. R. Weber, Ed. San Diego: Academic Press, 1993, pp.189-234.

DOI: 10.1016/s0080-8784(08)62801-x

Google Scholar

[26] A. Luque, A. Martí, E. Antolín, and C. Tablero, Intermediate bands versus levels in non-radiative recombination, Physica B, vol. 382, pp.320-327, (2006).

DOI: 10.1016/j.physb.2006.03.006

Google Scholar

[27] N. F. Mott, Metal-Insulator Transition, Rev. Mod. Phys., vol. 40, p.677–683 (1968).

DOI: 10.1103/revmodphys.40.677

Google Scholar

[28] W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, Journal of Applied Physics, vol. 32, pp.510-519, (1961).

DOI: 10.1063/1.1736034

Google Scholar

[29] P. Palacios, J. J. Fernandez, K. Sanchez, J. C. Conesa, and P. Wahnon, First-principles investigation of isolated band formation in half-metallic Ti[sub x]Ga[sub 1 - x]P (x = 0. 3125-0. 25), Physical Review B (Condensed Matter and Materials Physics), vol. 73, pp.085206-8, (2006).

Google Scholar

[30] P. Palacios, P. Wahnón, S. Pizzinato, and J. C. Conesa, Energetics of Formation of TiGa3As4 and TiGa3P4 Intermediate Band Materials, J. Chem. Phys., vol. 124, pp.14711-14715, (2006).

DOI: 10.1063/1.2140695

Google Scholar

[31] P. Palacios, I. Aguilera, K. Sanchez, J. C. Conesa, and P. Wahnon, Transition-Metal-Substituted Indium Thiospinels as Novel Intermediate-Band Materials: Prediction and Understanding of Their Electronic Properties, Physical Review Letters, vol. 101, pp.046403-4, (2008).

DOI: 10.1103/physrevlett.101.046403

Google Scholar

[32] P. Olsson, C. Domain, and J. -F. Guillemoles, Ferromagnetic Compounds for High Efficiency Photovoltaic Conversion: The Case of AlP: Cr, Physical Review Letters, vol. 102, p.227204, (2009).

DOI: 10.1103/physrevlett.102.227204

Google Scholar

[33] C. Tablero, Survey of intermediate band materials based on ZnS and ZnTe semiconductors, Solar Energy Materials and Solar Cells, vol. 90, pp.588-596, Mar (2006).

DOI: 10.1016/j.solmat.2005.04.036

Google Scholar

[34] N. J. Ekins-Daukes and T. W. Schmidt, A molecular approach to the intermediate band solar cell: The symmetric case, Applied Physics Letters, vol. 93, p.063507, (2008).

DOI: 10.1063/1.2970157

Google Scholar

[35] W. Wang, A. S. Lin, J. D. Phillips, and W. K. Metzger, Generation and recombination rates at ZnTe: O intermediate band states, Applied Physics Letters, vol. 95, p.261107, (2009).

DOI: 10.1063/1.3274131

Google Scholar

[36] W. Wang, A. S. Lin, and J. D. Phillips, Intermediate-band photovoltaic solar cell based on ZnTe: O, Applied Physics Letters, vol. 95, pp.011103-3, (2009).

DOI: 10.1063/1.3166863

Google Scholar

[37] K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, Diluted II-VI Oxide Semiconductors with Multiple Band Gaps, Physical Review Letters, vol. 91, pp.246403-4, (2003).

DOI: 10.1103/physrevlett.91.246403

Google Scholar

[38] W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, Band Anticrossing in GaInNAs Alloys, Physical Review Letters, vol. 82, p.1221, (1999).

DOI: 10.1103/physrevlett.82.1221

Google Scholar

[39] K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, and E. E. Haller, Multiband GaNAsP quaternary alloys, Applied Physics Letters, vol. 88, pp.092110-3, (2006).

DOI: 10.1063/1.2181627

Google Scholar

[40] G. Gonzalez-Díaz, J. Olea, I. Mártil, D. Pastor, A. Martí, E. Antolín, and A. Luque, Intermediate band mobility in heavily titanium-doped silicon layers , Solar Energy Materials and Solar cells, vol. 93, pp.1668-1673, (2009).

DOI: 10.1016/j.solmat.2009.05.014

Google Scholar

[41] J. Olea, M. Toledano-Luque, D. Pastor, G. Gonzalez-Diaz, and I. Martil, Titanium doped silicon layers with very high concentration, Journal of Applied Physics, vol. 104, pp.016105-3, (2008).

DOI: 10.1063/1.2949258

Google Scholar

[42] E. Antolin, A. Marti, J. Olea, D. Pastor, G. Gonzalez-Diaz, I. Martil, and A. Luque, Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material, Applied Physics Letters, vol. 94, pp.042115-3, (2009).

DOI: 10.1063/1.3077202

Google Scholar

[43] R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, and J. C. Conesa, Synthesis and Spectral Properties of Nanocrystalline V-substituted In2S3, a Novel Material for More Efficient Use of Solar Radiation, Chem. Maters, vol. 20, p.5125–51, (2008).

DOI: 10.1021/cm801128b

Google Scholar

[44] B. Marsen, L. Steinkopf, I. Lauermann, M. Gorgoi, H. Wilhelm, T. Unold, R. Scheer, and H. W. Schock, Titanium Incorporation in CuInS2 Solar Cells, E-MRS Spring Meeting; Symp B, Strasbourg, (2009).

DOI: 10.1016/j.solmat.2010.05.036

Google Scholar

[45] L. Cuadra, A. Martí, and A. Luque, Influence of the overlap between the absorption coefficients on the efficiency of the intermediate band solar cell, IEEE Transactions on Electron Devices, vol. 51, pp.1002-1007, (2004).

DOI: 10.1109/ted.2004.828161

Google Scholar

[46] A. Luque and A. Martí, On the Partial Filling of the Intermediate Band in IB Solar Cells , IEEE Transactions on Electron Devices, vol. To be published, (2010).

DOI: 10.1109/ted.2010.2045681

Google Scholar

[47] A. Martí, D. F. Marrón, and A. Luque, Evaluation of the efficiency potential of intermediate band solar cells based on thin-film chalcopyrite materials, Journal of Applied Physics, vol. 103, pp.073706-6, (2008).

DOI: 10.1063/1.2901213

Google Scholar

[48] A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, Elements of the design and analysis of quantum-dot intermediate band solar cells, Thin Solid Films, vol. 516, (2008).

DOI: 10.1016/j.tsf.2007.12.064

Google Scholar