Optimizing Quantum Dot Solar Concentrators with Thin Film Solar Cells

Article Preview

Abstract:

Quantum dots are proposed as luminescent species in luminescent solar concentrators in combination with thin film silicon solar cells. As both tuning absorption and emission properties of quantum dots is possible by adapting process conditions, as well as tuning the band gap of thin film silicon solar cells, an optimum combination is expected to exist for which the conversion efficiency of the whole device is maximum. As a first step we have employed ray-tracing modeling to determine the efficiency of a luminescent concentrator using several quantum dots and heteronanocrystals with varying Stokes’ shift and absorption cross sections. A maximum efficiency of 5.9% is found for so-called Type II heteronanocrystals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

176-181

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.S. Batchelder, A.H. Zewail, T. Cole: Appl Opt 18 (1979) p.3090.

Google Scholar

[2] J.S. Batchelder, A.H. Zewail, T. Cole: Appl Opt 20 (1981) p.3733.

Google Scholar

[3] R.L. Garwin: Rev Sci Instrum 31 (1960) p.1010.

Google Scholar

[4] A. Goetzberger, W. Greubel: Appl Phys 14 (1977) p.123.

Google Scholar

[5] A.M. Hermann: Sol Energy 29 (1982) p.323.

Google Scholar

[6] C.F. Rapp, N.L. Boling, in: Proceedings 13th IEEE Photovoltaic Specialists Conference, IEEE, New York, NY (1978) p.690.

Google Scholar

[7] R. Reisfeld, C.K. Jorgensen: Structure and Bonding 49 (1982) p.1.

Google Scholar

[8] W.H. Weber, J. Lambe: Appl Opt 15 (1976) p.2299.

Google Scholar

[9] W.A. Shurcliff, R.C. Jones; J Opt Soc Am 39 (1949) p.912.

Google Scholar

[10] G. Smestad, H. Ries, R. Winston, E. Yablonovitch: Sol Energy Mater 21 (1990) p.99.

Google Scholar

[11] E. Yablonovitch: J Opt Soc Am 70 (1980) p.1362.

Google Scholar

[12] W.G.J.H.M. Van Sark, K.W.J. Barnham, L.H. Slooff, et al.: Opt Exp 16 (2008) p.21773.

Google Scholar

[13] B.C. Rowan, L.R. Wilson, B.S. Richards: IEEE J Sel Topics in Quant Electr 14 (2008) p.1312.

Google Scholar

[14] L.H. Slooff, E.E. Bende, A.R. Burgers, et al.: phys stat sol (RRL) 2 (2008) pp.257-259.

Google Scholar

[15] A.J. Chatten, K.W.J. Barnham, B.F. Buxton, et al.: Semiconductors 38 (2004) p.909.

Google Scholar

[16] C. De Mello Donegá: Phys Rev B 81 (2010) p.165303.

Google Scholar

[17] R. Koole, M. Van Schooneveld, J. Hilhorst, et al.: Chem Mat 20 (2008) p.2503.

Google Scholar

[18] P.T.K. Chin, C. De Mello Donegá, S.S. Van Bavel, et al.: J Am Chem Soc 129 (2007) p.14880.

Google Scholar

[19] R.E.I. Schropp, M. Zeman: Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials, and Device Technology (Kluwer Academic, Boston, MA, USA, 1998).

DOI: 10.1007/978-1-4615-5631-2

Google Scholar

[20] A.R. Burgers, L.H. Slooff, R. Kinderman, et al., in: Proceedings of Twentieth European Photovoltaic Solar Energy Conference, WIP, Munich, Germany (2005) p.394.

Google Scholar

[21] W.J.M. Mulder, G.J. Strijkers, R. Koole, et al., in: Nanoparticles in Biomedical Imaging: Emerging Technologies and Applications, edited by J.W.M. Bulte, M. Modo, Springer, New York, NY, USA, (2007).

Google Scholar

[22] E.E. Bende, L.H. Slooff, A.R. Burgers, et al., in: Proceedings of Twentythird European Photovoltaic Solar Energy Conference, WIP, Munich, Germany (2008) p.461.

Google Scholar

[23] M.A. Green: Solar Cells; Operating Principles, Technology and Systems Application (Prentice-Hall, Englewood Cliffs, NJ, USA, 1982).

Google Scholar