The Evaluation of TiTe2 as a Diffusion Barrier in the Formation of Low Thermal Conductivity Nanolaminates with Bi2Te3 and Sb2Te3

Article Preview

Abstract:

The evolution of designed [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]y and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors were followed as a function of annealing temperature and time using both low and high angle x-ray diffraction techniques to probe the self assembly into nanolaminate materials. The [(Bi-Te)]x[(Sb-Te)]y precursors were found to interdiffuse at low temperatures to form a (BixSb1-x)2Te3 alloy. The [(Ti-Te)]x[(Bi-Te)]y and [(Ti-Te)]x[(Sb-Te)]y precursors formed ordered nanolaminates [{(TiTe2)}1.35]x[Bi2Te3]y and [{(TiTe2)}1.35]x[Sb2Te3]y respectively. The [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]x precursors formed [{(TiTe2)}1.35]w[(Bi0.5Sb0.5)2Te3]2x nanolaminates on annealing, as the bismuth and antimony layers interdiffused. Over the range of TiTe2 thicknesses used in [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors, Bi and Sb were found to interdiffuse through the 2-4 nm thick Ti-Te layers, resulting in the formation of (BixSb1-x)2Te3 alloy layers as part of the final nanolaminated products. When the Bi-Te and Sb-Te thicknesses were equal in the amorphous precursors, symmetric [{(TiTe2)}1.35]m[(Bi0.5Sb0.5)2Te3]n nanolamiantes were formed. When the thicknesses of Bi-Te and Sb-Te layers were not equal in the amorphous precursor, asymmetric [(TiTe2)1.35]m[(BixSb1-x)2Te3]n[(TiTe2)1.35]m[(BixSb1-x)2Te3]p nanolaminates were formed. These results imply that to form (A)w(B)x(C)y nanolaminates using designed layered precursors all three components must be immiscible. To form (A)x(B)y(A)x(C)z nanolaminates, the components must be immiscible or the precursor to the A component and the A component itself must be an effective interdiffusion barrier preventing B and C from mixing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-47

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Shen and J. Kirschner: Surf. Sci. Vol. 500 (2002), p.300.

Google Scholar

[2] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin and S. R. Phillpot: Journal of Applied Physics Vol. 93 (2003), p.793.

DOI: 10.1063/1.1524305

Google Scholar

[3] S. T. Huxtable, A. R. Abramson, C. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J. E. Bowers, A. Shakouri and E. T. Croke: Appl. Phys. Lett. Vol. 80 (2002), p.1737.

DOI: 10.1063/1.1455693

Google Scholar

[4] E. Swartz and R. O. Pohl: Reviews of Modern Physics Vol. 61 (1989), p.605.

Google Scholar

[5] H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau and D. H. Lowndes: Nature Vol. 433 (2005), p.395.

Google Scholar

[6] S. M. Nakhmanson, K. M. Rabe and D. Vanderbilt: Appl. Phys. Lett. Vol. 87 (2005), p.102906.

Google Scholar

[7] S. M. Landi, C. V. Tribuzy, P. L. Souza, R. Butendeich, A. C. Bittencourt and G. E. Marques: Phys. Rev. B: Condensed Matter and Materials Physics Vol. 67 (2003), p.5304.

Google Scholar

[8] P. Hashemi, L. Gomez, J. L. Hoyt, M. D. Robertson and M. Canonico: Appl. Phys. Lett. Vol. 91 (2007), p.3109.

Google Scholar

[9] L. Seravalli, P. Frigeri, M. Minelli, P. Allegri, V. Avanzini and S. Franchi: Appl. Phys. Lett. Vol. 87 (2005), p.3101.

DOI: 10.1063/1.2007860

Google Scholar

[10] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn: Nature Vol. 413 (2001), p.597.

Google Scholar

[11] R. Venkatasubramanian: Phys. Rev. B Vol. 61 (2000), p.3091.

Google Scholar

[12] T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge: Science Vol. 297 (2002), p.2229.

Google Scholar

[13] A. G. Norman, T. Y. Seong, I. T. Ferfuson, G. R. Booker and B. A. Joyce: Semicond. Sci. Technol. Vol. 8 (1993), p. S9.

Google Scholar

[14] M. Takahasi and J. Mizuki: J. Cryst. Growth Vol. 275 (2005), p.2201.

Google Scholar

[15] F. R. Harris, S. Standridge and D. C. Johnson: J. Am. Chem. Soc. Vol. 127 (2005), p.7843.

Google Scholar

[16] F. R. Harris, S. Standridge, C. Feik and D. C. Johnson: Angewandte Chemie Int. Ed. Vol. 42 (2003), p.5296.

Google Scholar

[17] J. J. Donovan and T. N. Tingle: J. Microscopy Vol. 2 (1996), p.1.

Google Scholar

[18] J. L. Pouchou and F. Pichoir: Scanning Vol. 12 (1990), p.212.

Google Scholar

[19] J. L. Pouchou, F. Pichoir, and D. Boivin: Micro beam Analysis (San Francisco Press: San Francisco 1990), p.120.

Google Scholar