Full Optical Scatter Analysis for Novel Photonic and Infrared Metamaterials

Article Preview

Abstract:

Artificial structures with sub-optical wavelength features are engineered to feature non-conventional values for material properties such as optical and infrared permeability and permittivity. Such artificial structures are referred to as optical and infrared metamaterials.[1] The application space of electromagnetic metamaterials includes novel sub-wavelength waveguides and antennas, true time delay devices, optical filters, and plasmonic electronic-optical interfaces.[2] In this paper presents an optical diagnostic technique adapted for measuring and analyzing bidirectional polarimetric scatter from novel photonic and infrared metamaterials of interest. This optical diagnostic technique is also broadly applicable to other optical/infrared metamaterial structures that are proposed or developed in the future. The specific project goals are a) Demonstrate a novel metamaterial characterization full-polarimetric diffuse ellipsometry technique suitable to measure desired material properties with stated uncertainty limits for novel photonic and infrared metamaterials of interest. b) Demonstrate incorporation of predictive computational codes that estimate the electro-magnetic property values for metamaterial designs and concepts of interest.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

240-245

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. M. Walser, Electromagnetic metamaterials, Proceedings of SPIE 4467, 1 (2001).

Google Scholar

[2] E. Ozbay, Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions, Science 311, 189-193 (2006).

DOI: 10.1126/science.1114849

Google Scholar

[3] D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Physical Review B 65, 195104 (2002).

DOI: 10.1103/physrevb.65.195104

Google Scholar

[4] C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, Retrieving effective parameters for metamaterials at oblique incidence, Physical Review B 77, 195328 (2008).

DOI: 10.1103/physrevb.77.195328

Google Scholar

[5] R. M. A. Azzam and N. M. Bashara, Ellipsometry and polarized light (North-Holland, 1977).

Google Scholar

[6] D. H. Goldstein and R. A. Chipman, Error analysis of a Mueller matrix polarimeter, Journal of the Optical Society of America A 7, 693-700 (1990).

Google Scholar

[7] M. H. Smith, Optimization of a dual-rotating-retarder Mueller matrix polarimeter, Appl. Opt. 41, 2488-2493 (2002).

DOI: 10.1364/ao.41.002488

Google Scholar

[8] E. Compain, S. Poirier, and B. Drevillon, General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers, Appl. Opt. 38, 3490-3502 (1999).

DOI: 10.1364/ao.38.003490

Google Scholar

[9] D. B. Chenault and R. A. Chipman, Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter, Appl. Opt. 32, 3513-3519 (1993).

DOI: 10.1364/ao.32.003513

Google Scholar

[10] B. T. Draine, The discrete-dipole approximation and its application to interstellar graphite grains, Astrophys. J. 333, (1988).

DOI: 10.1086/166795

Google Scholar

[11] B. T. Draine and P. J. Flatau, Discrete-dipole approximation for scattering calculations, JOURNAL-OPTICAL SOCIETY OF AMERICA A 11, 1491-1491 (1994).

DOI: 10.1364/josaa.11.001491

Google Scholar

[12] B. T. Draine and P. Flatau, User Guide for the Discrete Dipole Approximation Code DDSCAT 7. 0, eprint arXiv: 0809. 0337 (2008).

Google Scholar

[13] C. Noguez, Surface plasmons on metal nanoparticles: the influence of shape and physical environment, J. Phys. Chem. C 111, 3806-3819 (2007).

DOI: 10.1021/jp066539m

Google Scholar

[14] C. Noguez, C. E. Roman-Velazquez, R. Esquivel-Sirvent, and C. Villarreal, High-multipolar effects on the Casimir force: The non-retarded limit, Europhys. Lett. 67, 191-197 (2004).

DOI: 10.1209/epl/i2003-10282-0

Google Scholar

[15] C. Noguez, I. O. Sosa, R. G. Barrera, and M. DF, Light Scattering by Isolated Nanoparticles With Arbitrary Shapes, in MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, Anonymous (Warrendale, Pa.; Materials Research Society; 1999, 2001), pp.275-280.

DOI: 10.1557/proc-704-w9.24.1

Google Scholar

[16] I. O. Sosa, C. Noguez, and R. G. Barrera, Optical Properties of Metal Nanoparticles with Arbitrary Shapes, J Phys Chem B 107, 6269-6275 (2003).

DOI: 10.1021/jp0274076

Google Scholar

[17] D. Cho, F. Wang, X. Zhang, and Y. R. Shen, Contribution of electric quadrupole resonance in optical metamaterials, in American Physical Society, 2008 APS March Meeting, March 10-14, 2008, abstract# D35. 012, Anonymous (, 2008).

Google Scholar

[18] W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Optical Cloaking with Non-Magnetic Metamaterials, Arxiv preprint physics/0611242 (2006).

Google Scholar

[19] W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Optical cloaking with metamaterials, Nature Photonics 1, 224–226 (2007).

DOI: 10.1038/nphoton.2007.28

Google Scholar

[20] U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, Dual-Band Negative Index Metamaterial: Double-Negative at 813 nm and Single-Negative at 772 nm, (2008).

DOI: 10.1364/ol.32.001671

Google Scholar

[21] E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksberg, and R. P. Van Duyne, Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography, Journal of physical chemistry. C 111, 4116-4124 (2007).

DOI: 10.1021/jp064094w

Google Scholar

[22] A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, Comparison between discrete dipole implementations and exact techniques, Journal of Quantitative Spectroscopy and Radiative Transfer 106, 417-436 (2007).

DOI: 10.1016/j.jqsrt.2007.01.026

Google Scholar

[23] F. S. Diana, A. David, I. Meinel, R. Sharma, C. Weisbuch, S. Nakamura, and P. M. Petroff, Photonic crystal-assisted light extraction from a colloidal quantum Dot/GaN hybrid structure, Nano Letters 6, 1116-1120 (2006).

DOI: 10.1021/nl060535b

Google Scholar

[24] L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Lett 6, 2061 (2006).

DOI: 10.1021/nl061286u

Google Scholar

[25] L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Localized surface plasmon resonance spectroscopy of single silver nanocubes, Nano Lett 5, 2034–2038 (2005).

DOI: 10.1021/nl0515753

Google Scholar

[26] K. Byun, S. Kim, and D. Kim, Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis, Optics Express 13, 3737-3742 (2005).

DOI: 10.1364/opex.13.003737

Google Scholar

[27] J. Lu, C. Petre, E. Yablonovitch, and J. Conway, Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag-SiO_2 interface, Journal of the Optical Society of America B 24, 2268-2272 (2007).

DOI: 10.1364/josab.24.002268

Google Scholar

[28] M. G. Moharam and T. K. Gaylord, Rigorous Coupled-Wave Analysis of Planar-Grating Diffraction (OSA, 1980).

Google Scholar

[29] J. Spiegel, J. de la Torre, M. Darques, L. Piraux, and I. Huynen, Permittivity Model for Ferromagnetic Nanowired Substrates, IEEE Microwave and Wireless Components Letters 17, 492 (2007).

DOI: 10.1109/lmwc.2007.899303

Google Scholar

[30] R. A. Chipman, Handbook of Optics, vol. II, ch. 22, Optical Society of America, (2000).

Google Scholar

[31] T. A. Germer and C. C. Asmail, Goniometric optical scatter instrument for out-of-plane ellipsometry measurements, Rev. Sci. Instrum. 70, 3688 (1999).

DOI: 10.1063/1.1149950

Google Scholar

[32] M. A. Mahmoud, C. E. Tabor, and M. A. El-Sayed, Surface-Enhanced Raman Scattering Enhancement by Aggregated Silver Nanocube Monolayers Assembled by the Langmuir-Blodgett Technique at Different Surface Pressures, J. Phys. Chem. C 113, 5493 (2009).

DOI: 10.1021/jp900648r

Google Scholar