Development of Cardiovascular Implants Using Nanocomposite Polymer and Stem Cell Technology: From Lab to Commercialisation

Article Preview

Abstract:

Cardiovascular implants including bypass grafts, heart valves and stents are prone to thrombogenicity and mechanical incompatibility thus leading to limited graft patencies. Thus to overcome these issues, a nanocomposite polymer based on polyhedral oligomeric silsesquioxane (POSS) nanoparticles and poly(carbonate urea)urethane (PCU) has been developed and patented. A solvent exchange coagulation technique has been used in the fabrication of a compliant, POSS PCU graft. In addition, we present details of bonding of bioactive peptides to attract progenitor stem cells from peripheral circulating blood onto the implants and the endothelialisation potential on the lumen. Peptides are designed to enhance interactions with cell receptor integrins whilst and in-vitro and in-vivo tests are performed to determine both endothelial and platelet as well as whole blood interactions. In conclusion these results, together with its ease of manufacture and low cost, suggest that POSS-PCU nanocomposite could be an attractive material of choice for the development of cardiovascular implants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-213

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Allender, M. Rayner, and ., Coronary heart disease statistics; British Heart Foundation, (2007).

Google Scholar

[2] S. Sarkar, T. Schmitz-Rixen, G. Hamilton, and A. M. Seifalian, Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review, Medical & Biological Engineering & Computing, vol. 45, no. 4, pp.327-336, (2007).

DOI: 10.1007/s11517-007-0176-z

Google Scholar

[3] S. Sarkar, H. J. Salacinski, G. Hamilton, and A. M. Seifalian, The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency, Eur. J. Vasc. Endovasc. Surg., vol. 31, no. 6, pp.627-636, June2006.

DOI: 10.1016/j.ejvs.2006.01.006

Google Scholar

[4] M. R. Hoenig, G. R. Campbell, and J. H. Campbell, Vascular grafts and the endothelium, Endothelium, vol. 13, no. 6, pp.385-401, Nov. (2006).

DOI: 10.1080/10623320601061615

Google Scholar

[5] S. T. Rashid, B. Fuller, G. Hamilton, and A. M. Seifalian, Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery, FASEB J., Jan. (2008).

DOI: 10.1096/fj.07-096586

Google Scholar

[6] H. J. Salacinski, N. R. Tai, G. Punshon, A. Giudiceandrea, G. Hamilton, and A. M. Seifalian, Optimal endothelialisation of a new compliant poly(carbonate-urea)urethane vascular graft with effect of physiological shear stress, European Journal of Vascular and Endovascular Surgery, vol. 20, no. 4, pp.342-352, (2000).

DOI: 10.1016/s1078-5884(00)91185-7

Google Scholar

[7] J. M. Melero-Martin, Z. A. Khan, A. Picard, X. Wu, S. Paruchuri, and J. Bischoff, In vivo vasculogenic potential of human blood-derived endothelial progenitor cells, Blood, vol. 109, no. 11, pp.4761-4768, (2007).

DOI: 10.1182/blood-2006-12-062471

Google Scholar

[8] C. Urbich and S. Dimmeler, Endothelial progenitor cells: characterization and role in vascular biology, Circ. Res., vol. 95, no. 4, pp.343-353, Aug. (2004).

DOI: 10.1161/01.res.0000137877.89448.78

Google Scholar

[9] M. Jevon, A. Dorling, and P. I. Hornick, Progenitor cells and vascular disease, Cell Proliferation, vol. 41, pp.146-164, (2008).

DOI: 10.1111/j.1365-2184.2008.00488.x

Google Scholar

[10] N. Alobaid, H. J. Salacinski, K. M. Sales, B. Ramesh, R. Y. Kannan, G. Hamilton, and A. M. Seifalian, Nanocomposite containing bioactive peptides promote endothelialisation by circulating progenitor cells: An in vitro evaluation, Eur J Vasc Endovasc Surg, vol. 32, no. 1, pp.76-83.

DOI: 10.1016/j.ejvs.2005.11.034

Google Scholar

[11] A. de Mel, G. Jell, M. Stevens, and A. M. Seifalian, Biofunctionalisation of Biomaterials for Accelerated In-Situ Endothelialisation: A Review, (2008).

Google Scholar

[12] N. Alobaid, H. J. Salacinski, K. M. Sales, B. Ramesh, R. Y. Kannan, G. Hamilton, and A. M. Seifalian, Nanocomposite containing bioactive peptides promote endothelialisation by circulating progenitor cells: An in vitro evaluation, Eur J Vasc Endovasc Surg, vol. 32, no. 1, pp.76-83.

DOI: 10.1016/j.ejvs.2005.11.034

Google Scholar

[13] A. G. Kidane, G. Punshon, H. J. Salacinski, B. Ramesh, A. Dooley, M. Olbrich, J. Heitz, G. Hamilton, and A. M. Seifalian, Incorporation of a lauric acid-conjugated GRGDS peptide directly into the matrix of a poly(carbonate-urea)urethane polymer for use in cardiovascular bypass graft applications, J. Biomed. Mater. Res. A, vol. 79, no. 3, pp.606-617, Dec. (2006).

DOI: 10.1002/jbm.a.30817

Google Scholar

[14] B. Krijgsman, A. M. Seifalian, H. J. Salacinski, N. R. Tai, G. Punshon, B. J. Fuller, and G. Hamilton, An assessment of covalent grafting of RGD peptides to the surface of a compliant poly(carbonate-urea)urethane vascular conduit versus conventional biological coatings: its role in enhancing cellular retention, Tissue Eng, vol. 8, no. 4, pp.673-680, Aug. (2002).

DOI: 10.1089/107632702760240580

Google Scholar

[15] H. J. Salacinski, G. Hamilton, and A. M. Seifalian, Surface functionalization and grafting of heparin and/or RGD by an aqueous-based process to a poly(carbonate-urea)urethane cardiovascular graft for cellular engineering applications, J. Biomed. Mater. Res. A, vol. 66, no. 3, pp.688-697, Sept. (2003).

DOI: 10.1002/jbm.a.10020

Google Scholar

[16] A. Tiwari, H. J. Salacinski, G. Punshon, G. Hamilton, and A. M. Seifalian, Development of a hybrid cardiovascular graft using a tissue engineering approach, FASEB J., vol. 16, no. 8, pp.791-796, June2002.

DOI: 10.1096/fj.01-0826com

Google Scholar

[17] A. Tiwari, A. Kidane, H. Salacinski, G. Punshon, G. Hamilton, and A. M. Seifalian, Improving endothelial cell retention for single stage seeding of prosthetic grafts: use of polymer sequences of arginine-glycine-aspartate, Eur. J. Vasc. Endovasc. Surg., vol. 25, no. 4, pp.325-329, Apr. (2003).

DOI: 10.1053/ejvs.2002.1854

Google Scholar

[18] R. Y. Kannan, H. J. Salacinski, P. E. Butler, and A. M. Seifalian, Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications, Acc. Chem. Res., vol. 38, no. 11, pp.879-884, Nov. (2005).

DOI: 10.1021/ar050055b

Google Scholar

[19] R. Y. Kannan, H. J. Salacinski, M. Odlyha, P. E. Butler, and A. M. Seifalian, The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: an in vitro study, Biomaterials, vol. 27, no. 9, pp.1971-1979, Mar. (2006).

DOI: 10.1016/j.biomaterials.2005.10.006

Google Scholar

[20] R. Y. Kannan, H. J. Salacinski, G. J. De, I. Clatworthy, L. Bozec, M. Horton, P. E. Butler, and A. M. Seifalian, The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite, Biomacromolecules., vol. 7, no. 1, pp.215-223, Jan. (2006).

DOI: 10.1021/bm050590z

Google Scholar

[21] S. Sarkar, G. Burriesci, A. Wojcik, N. Aresti, G. Hamilton, and A. M. Seifalian, Manufacture of small calibre quadruple lamina vascular bypass grafts using a novel automated extrusion-phase-inversion method and nanocomposite polymer, J. Biomech., vol. 42, no. 6, pp.722-730, Apr. (2009).

DOI: 10.1016/j.jbiomech.2009.01.003

Google Scholar

[22] H. J. Salacinski, S. Handcock, and A. M. Seifalian, Polymer for use in conduits and medical devices. Patent No.: WO2005070998: 2005, (2005).

Google Scholar

[23] R. Y. Kannan, H. J. Salacinski, M. J. Edirisinghe, G. Hamilton, and A. M. Seifalian, Polyhedral oligomeric silsequioxane-polyurethane nanocomposite microvessels for an artificial capillary bed, Biomaterials, vol. 27, no. 26, pp.4618-4626, Sept. (2006).

DOI: 10.1016/j.biomaterials.2006.04.024

Google Scholar

[24] S. Sarkar, G. Burriesci, A. Wojcik, N. Aresti, G. Hamilton, and A. M. Seifalian, Manufacture of small calibre quadruple lamina vascular bypass grafts using a novel automated extrusion-phase-inversion method and nanocomposite polymer, J. Biomech., vol. 42, no. 6, pp.722-730, Apr. (2009).

DOI: 10.1016/j.jbiomech.2009.01.003

Google Scholar

[25] A. G. Kidane, M. J. Edirisinghe, P. Bonhoeffer, and A. M. Seifalian, Flow behaviour of a POSS biopolymer solution, Biorheology, vol. 44, no. 4, pp.265-272, (2007).

Google Scholar

[26] J. D. Andrade and V. Hlady, Protein Adsorption and Materials Biocompatibility - A Tutorial Review and Suggested Hypotheses, Advances in Polymer Science, vol. 79, pp.1-63, (1986).

DOI: 10.1007/3-540-16422-7_6

Google Scholar