[1]
S. Allender, M. Rayner, and ., Coronary heart disease statistics; British Heart Foundation, (2007).
Google Scholar
[2]
S. Sarkar, T. Schmitz-Rixen, G. Hamilton, and A. M. Seifalian, Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review, Medical & Biological Engineering & Computing, vol. 45, no. 4, pp.327-336, (2007).
DOI: 10.1007/s11517-007-0176-z
Google Scholar
[3]
S. Sarkar, H. J. Salacinski, G. Hamilton, and A. M. Seifalian, The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency, Eur. J. Vasc. Endovasc. Surg., vol. 31, no. 6, pp.627-636, June2006.
DOI: 10.1016/j.ejvs.2006.01.006
Google Scholar
[4]
M. R. Hoenig, G. R. Campbell, and J. H. Campbell, Vascular grafts and the endothelium, Endothelium, vol. 13, no. 6, pp.385-401, Nov. (2006).
DOI: 10.1080/10623320601061615
Google Scholar
[5]
S. T. Rashid, B. Fuller, G. Hamilton, and A. M. Seifalian, Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery, FASEB J., Jan. (2008).
DOI: 10.1096/fj.07-096586
Google Scholar
[6]
H. J. Salacinski, N. R. Tai, G. Punshon, A. Giudiceandrea, G. Hamilton, and A. M. Seifalian, Optimal endothelialisation of a new compliant poly(carbonate-urea)urethane vascular graft with effect of physiological shear stress, European Journal of Vascular and Endovascular Surgery, vol. 20, no. 4, pp.342-352, (2000).
DOI: 10.1016/s1078-5884(00)91185-7
Google Scholar
[7]
J. M. Melero-Martin, Z. A. Khan, A. Picard, X. Wu, S. Paruchuri, and J. Bischoff, In vivo vasculogenic potential of human blood-derived endothelial progenitor cells, Blood, vol. 109, no. 11, pp.4761-4768, (2007).
DOI: 10.1182/blood-2006-12-062471
Google Scholar
[8]
C. Urbich and S. Dimmeler, Endothelial progenitor cells: characterization and role in vascular biology, Circ. Res., vol. 95, no. 4, pp.343-353, Aug. (2004).
DOI: 10.1161/01.res.0000137877.89448.78
Google Scholar
[9]
M. Jevon, A. Dorling, and P. I. Hornick, Progenitor cells and vascular disease, Cell Proliferation, vol. 41, pp.146-164, (2008).
DOI: 10.1111/j.1365-2184.2008.00488.x
Google Scholar
[10]
N. Alobaid, H. J. Salacinski, K. M. Sales, B. Ramesh, R. Y. Kannan, G. Hamilton, and A. M. Seifalian, Nanocomposite containing bioactive peptides promote endothelialisation by circulating progenitor cells: An in vitro evaluation, Eur J Vasc Endovasc Surg, vol. 32, no. 1, pp.76-83.
DOI: 10.1016/j.ejvs.2005.11.034
Google Scholar
[11]
A. de Mel, G. Jell, M. Stevens, and A. M. Seifalian, Biofunctionalisation of Biomaterials for Accelerated In-Situ Endothelialisation: A Review, (2008).
Google Scholar
[12]
N. Alobaid, H. J. Salacinski, K. M. Sales, B. Ramesh, R. Y. Kannan, G. Hamilton, and A. M. Seifalian, Nanocomposite containing bioactive peptides promote endothelialisation by circulating progenitor cells: An in vitro evaluation, Eur J Vasc Endovasc Surg, vol. 32, no. 1, pp.76-83.
DOI: 10.1016/j.ejvs.2005.11.034
Google Scholar
[13]
A. G. Kidane, G. Punshon, H. J. Salacinski, B. Ramesh, A. Dooley, M. Olbrich, J. Heitz, G. Hamilton, and A. M. Seifalian, Incorporation of a lauric acid-conjugated GRGDS peptide directly into the matrix of a poly(carbonate-urea)urethane polymer for use in cardiovascular bypass graft applications, J. Biomed. Mater. Res. A, vol. 79, no. 3, pp.606-617, Dec. (2006).
DOI: 10.1002/jbm.a.30817
Google Scholar
[14]
B. Krijgsman, A. M. Seifalian, H. J. Salacinski, N. R. Tai, G. Punshon, B. J. Fuller, and G. Hamilton, An assessment of covalent grafting of RGD peptides to the surface of a compliant poly(carbonate-urea)urethane vascular conduit versus conventional biological coatings: its role in enhancing cellular retention, Tissue Eng, vol. 8, no. 4, pp.673-680, Aug. (2002).
DOI: 10.1089/107632702760240580
Google Scholar
[15]
H. J. Salacinski, G. Hamilton, and A. M. Seifalian, Surface functionalization and grafting of heparin and/or RGD by an aqueous-based process to a poly(carbonate-urea)urethane cardiovascular graft for cellular engineering applications, J. Biomed. Mater. Res. A, vol. 66, no. 3, pp.688-697, Sept. (2003).
DOI: 10.1002/jbm.a.10020
Google Scholar
[16]
A. Tiwari, H. J. Salacinski, G. Punshon, G. Hamilton, and A. M. Seifalian, Development of a hybrid cardiovascular graft using a tissue engineering approach, FASEB J., vol. 16, no. 8, pp.791-796, June2002.
DOI: 10.1096/fj.01-0826com
Google Scholar
[17]
A. Tiwari, A. Kidane, H. Salacinski, G. Punshon, G. Hamilton, and A. M. Seifalian, Improving endothelial cell retention for single stage seeding of prosthetic grafts: use of polymer sequences of arginine-glycine-aspartate, Eur. J. Vasc. Endovasc. Surg., vol. 25, no. 4, pp.325-329, Apr. (2003).
DOI: 10.1053/ejvs.2002.1854
Google Scholar
[18]
R. Y. Kannan, H. J. Salacinski, P. E. Butler, and A. M. Seifalian, Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications, Acc. Chem. Res., vol. 38, no. 11, pp.879-884, Nov. (2005).
DOI: 10.1021/ar050055b
Google Scholar
[19]
R. Y. Kannan, H. J. Salacinski, M. Odlyha, P. E. Butler, and A. M. Seifalian, The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: an in vitro study, Biomaterials, vol. 27, no. 9, pp.1971-1979, Mar. (2006).
DOI: 10.1016/j.biomaterials.2005.10.006
Google Scholar
[20]
R. Y. Kannan, H. J. Salacinski, G. J. De, I. Clatworthy, L. Bozec, M. Horton, P. E. Butler, and A. M. Seifalian, The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite, Biomacromolecules., vol. 7, no. 1, pp.215-223, Jan. (2006).
DOI: 10.1021/bm050590z
Google Scholar
[21]
S. Sarkar, G. Burriesci, A. Wojcik, N. Aresti, G. Hamilton, and A. M. Seifalian, Manufacture of small calibre quadruple lamina vascular bypass grafts using a novel automated extrusion-phase-inversion method and nanocomposite polymer, J. Biomech., vol. 42, no. 6, pp.722-730, Apr. (2009).
DOI: 10.1016/j.jbiomech.2009.01.003
Google Scholar
[22]
H. J. Salacinski, S. Handcock, and A. M. Seifalian, Polymer for use in conduits and medical devices. Patent No.: WO2005070998: 2005, (2005).
Google Scholar
[23]
R. Y. Kannan, H. J. Salacinski, M. J. Edirisinghe, G. Hamilton, and A. M. Seifalian, Polyhedral oligomeric silsequioxane-polyurethane nanocomposite microvessels for an artificial capillary bed, Biomaterials, vol. 27, no. 26, pp.4618-4626, Sept. (2006).
DOI: 10.1016/j.biomaterials.2006.04.024
Google Scholar
[24]
S. Sarkar, G. Burriesci, A. Wojcik, N. Aresti, G. Hamilton, and A. M. Seifalian, Manufacture of small calibre quadruple lamina vascular bypass grafts using a novel automated extrusion-phase-inversion method and nanocomposite polymer, J. Biomech., vol. 42, no. 6, pp.722-730, Apr. (2009).
DOI: 10.1016/j.jbiomech.2009.01.003
Google Scholar
[25]
A. G. Kidane, M. J. Edirisinghe, P. Bonhoeffer, and A. M. Seifalian, Flow behaviour of a POSS biopolymer solution, Biorheology, vol. 44, no. 4, pp.265-272, (2007).
Google Scholar
[26]
J. D. Andrade and V. Hlady, Protein Adsorption and Materials Biocompatibility - A Tutorial Review and Suggested Hypotheses, Advances in Polymer Science, vol. 79, pp.1-63, (1986).
DOI: 10.1007/3-540-16422-7_6
Google Scholar