Advances in Science and Technology
Vol. 86
Vol. 86
Advances in Science and Technology
Vol. 85
Vol. 85
Advances in Science and Technology
Vol. 84
Vol. 84
Advances in Science and Technology
Vol. 83
Vol. 83
Advances in Science and Technology
Vol. 82
Vol. 82
Advances in Science and Technology
Vol. 81
Vol. 81
Advances in Science and Technology
Vol. 80
Vol. 80
Advances in Science and Technology
Vol. 79
Vol. 79
Advances in Science and Technology
Vol. 78
Vol. 78
Advances in Science and Technology
Vol. 77
Vol. 77
Advances in Science and Technology
Vol. 76
Vol. 76
Advances in Science and Technology
Vol. 75
Vol. 75
Advances in Science and Technology
Vol. 74
Vol. 74
Advances in Science and Technology Vol. 80
Title:
Smart and Interactive Textiles
Subtitle:
4th International Conference on Smart Materials, Structures and Systems Symposium D
Edited by:
Dr. Pietro Vincenzini and Cosimo Carfagna
ToC:
Paper Title Page
Abstract: Comfort is a state of mind affected by many factors, and clothing has contributing to the well being of man, changing in some cases his customs. Since the origin, the primary functions of clothes have been of protection against cold or in general against environmental stimuli. New functions are required to modern textiles: wearing comfort, durability, cleaning properties, optimized functionality for specific applications (workwear, sportswear, medical wear). Smart and interactive textiles represent a budding interdisciplinary field that brings together specialists in information technology, micro systems, materials engineering, and production technology. The focus of this new area is on developing the enabling technologies and fabrication techniques for the economical production of flexible, conformable and large-area textile- based information systems that are expected to have more applications for different end users. The smart and interactive textiles will be highly applied in the next generation of fibres, fabrics and items produced from them. Application of smart textiles can be now found everywhere. The market and the business of wearable, interactive and smart textiles are presently changing the basis of the textile industry. The changes are dynamic knowledge transfer, innovative systems, new employment opportunities in the smart industries and others. Business possibilities are not limited to the textile industry, but they can be found in almost any line of business. The European textile sector is one of the mainstays of the European Manufacturing Industry. The market for smart textiles is one of the most dynamic and fast growing sectors and offers huge potential for companies.
1
Abstract: For the development of piezoresistive sensor fibers compounds based on thermoplastic elastomer (TPE) matrix and electrical conductive carbon black powder was used. In this paper the fabrication of piezoresistive fibers by using thermoplastic extrusion method will be demonstrated. With the thermoplastic processing route (e.g. melt spinning process) smart functional senor fibers with a diameter of 300 µm where produced. Their dynamic and static electrical conductive properties where investigated by using a cycling mechanical tensile test in combination with conductive measurement. Compounds of three different SEBS type TPEs and compounds with different content of carbon black were used to investigate the influence on the drift and shift of the electrical signal during dynamic and static strain exposure. By changing the SEBS-Block copolymer matrix and by increasing the carbon black content above 45 wt% stable electrical signal with low relaxation behavior can be achieved.
7
Abstract: In place of silicon, which is normally used in microelectronics, organic materials offer the opportunity to produce devices on large area, low-cost and plastic planar substrates. These materials are attracting increased attention also in the field of electronic-textiles (e-textiles) because they show an interesting combination of electronic and mechanical properties that can be favourably exploited in smart textiles. A key step for the integration of mass production of e-textiles is to combine electronic production with textile manufactures. In the last years, progress has been achieved in the development of fibers and their processing for application in e-textiles. The application ranged from fabric integrated light sources to low cost solid state lighting for protection and security. Here research results are presented regarding the integration of encapsulated glass OLEDs and additionally OLEDs fabricated on flexible high barrier substrates which were integrated into textiles. On the other hand, the first results concerning the realization of an OLED on cylindrical surfaces based on solution processed technologies which is a first step in the direction of low cost processing will be discussed. A simple, inverted planar construction prepared from solution was realized. This preliminary work was the precondition for the development of a fiber based OLED. In addition, OLEDs that were prepared using glass fibers as substrates and solution processed active and hole-transport layers will be shown.
14
Abstract: In this project, solar harvesting and sound sensing are inputs for energy and mood, whilst power consumption for electronic devices and colour changing through lighting are the corresponding outputs. Between each set of input and output, there are key steps in processing, computing and testing which determine the working of the system. Purposed built printed-circuit boards (PCBs) are designed and made by integrating, programming and implementing ICs. For the energy system, a PCB is required for storing and conditioning the power from the PVs, and it uses a programmable microcontroller to decode the wearer’s mood intelligibly through a microphone in the information system. In this paper, the operation of the SMART clothing photonic system named “MoodWear” in energy harvesting and mood changing will be described, and the garment collection will be presented.
22
Abstract: This paper highlight the most important areas and directions of shape memory polymers in textiles. The textiles of shape memory polymers involve fibre spinning (including wet-spinning, melt-spinning and electro-spinning), fabric, smart apparel, actively finishing technology and WVP investigation. Based on the molecular structure of shape memory polymer, the shape memory transformation from polymer to textiles and application theory are illustrated and stated. Additionally, the challenges of shape memory polymers in textiles are pointed out and some research directions are also suggested in this paper.
30
Abstract: The skin is the largest human organ. Its care and health are, therefore, essential. The skin can only be healthy and attractive when it is in balance. The pre-requisites for healthy skin are: the moisture content, the protective function, elasticity and cell renewal. All of these parameters are supported by applying pharmaceuticals and wellness substances. Pharmaceutical law defines the former as substances and compositions of substances that are applied to or in the human body to heal, ease, prevent or detect illness, pain, bodily injury or disease symptoms. Wellness substances are substances able to enhance the sense of overall wellbeing in all physical and mental aspects of life, and bring the mind, body and spirit in harmony with the nature. The newest movement in beauty is the hybrid of textiles and cosmetics called Cosmeto-Wear: consumers, especially ladies, expect clothing to have a positive effect on the conditions of their skin. Hence, finishers are being asked to create products that offer new and/or improved functions. In recent years, textile materials with special applications in the cosmetic field have been developed. A new sector of cosmetic textiles is opened up and several cosmetic textile products are currently available in the market. There are essentially two different ways of manufacturing cosmetic textiles, they are the binding of microencapsulated cosmetic components or the fabric coating by active finishes. This paper describes the fabrication technologies of cosmeto-textiles, discussing the choice of active components and the problem of their unwanted loss during washing, as well as the trend of cosmeto-textile industry in view of consumers demands.
39
Abstract: Recently, an increasing interest in pH-sensitive textiles is recognized. These chromic textiles can be used as flexible sensors for various applications. The aim of the current research is to develop textile pH-sensors through the application of pH-sensitive dyes on various textile materials using different techniques. The results of our study show that halochromic dyes can be incorporated into conventional textiles by a conventional dyeing technique. Also coating the fabrics with a sol-gel layer containing the halochromic dye proved to be successful. The majority of these developed materials showed a clearly visible color change with a pH-variation. The response of the sensors was dependent on the density of the fabric but was generally relatively fast, especially for the sol-gel treated fabrics. The halochromic coloration of nanofibres was realized by directly adding the dyes during the fiber formation, which was shown to be highly effective. Again, a clear halochromic shift was observed. The response of these sensors was fast thanks to the high porosity of nanofibrous non-wovens. Yet, it should be kept in mind that the halochromic behavior of the dyes in the textile matrix altered compared to their behavior in solution which is most likely attributed to dye-fiber interactions. Generally we can conclude that various coloration techniques showed to be effective for the development of innovative textile pH-sensors.
47
Abstract: The integration of Nitinol wire directly into flexible textile structures has seen limited successful research outcomes. This has mainly been due to issues with shape training and the accurate positioning of the Nitinol components. A new approach is investigated here, which utilises small diameter (0.15mm - 0.10mm) Nitinol components and the manipulation of the woven structure. This combined approach has the potential to improve the dynamic control of the resulting textiles, giving the textile designer further latitude to adapt a combination of functional and visual properties, as well as expanding application possibilities. This investigation focuses on the development of composite samples that integrate Nitinol directly into woven cotton, Kevlar, polyester and polypropylene textiles, demonstrating the potential for medical and healthcare applications. The prototype composite textiles developed, investigate a range of controlled surface manipulations as well as larger scale shape changes, including the creation of arced forms, pleating, expansion and compression. With supporting data, the evaluation of these samples explores the potential of integrating small diameter Nitinol wires into woven structures and the resultant levels of shape transfer, control and cyclic speed achievable.
53
Abstract: We have developed a unique “paper transistor” comprised of carbon nanotube (CNT) composite papers. CNTs have recently attracted much research attention in the nanotechnology field due to their many excellent physical properties, including good electrical and heat conductivities, physical strength, and dual semiconducting- and metallic- characteristics. CNTs have great potential for use as many different functional materials. In a previous work, we developed a CNT-composite paper as a new functional material. A normal paper is flexible and can be fabricated and used easily, and we can easily fabricate the CNT-composite paper by mixing pulp with CNTs. The resulting CNT-composite paper has both CNT and normal paper characteristics. In this study, we focused primarily on the dual semiconducting- and metallic- characteristics exhibited by CNTs because we can create paper composites that are both semiconducting and metallic. Our main goal was to develop a field-effect-transistor (FET) using semiconducting- and metallic- CNT-composite papers. A conventional FET has metal, insulator, and semiconductor layers. Our FET also has three layers: the metallic CNT-composite paper is used for gate, source, and drain electrodes as the metal layer; the semiconducting CNT-composite paper is used for a semiconductor as the channel layer; and the normal paper is used as a gate insulator layer. The key point here is that we were able to design and develop an FET using only normal paper and two kinds of CNT-composite paper, without any silicon or semiconductors. After the construction, we measured the electrical conductivity of our FET to test its operation. A drain-to-source current of about 10μA was observed. Moreover, we could control the current flow by controlling the gate voltage. These results demonstrate that it is possible to fabricate a paper FET using only normal paper and two kinds of CNT-composite paper.
59