[1]
M. Behl and A. Lendlein, Materials Today 2007, 10, 20.
Google Scholar
[2]
D. Ratna and J. Karger-Kocsis, J MATER SCI 2008, 43, 254.
Google Scholar
[3]
Y. Zhu, J. L. Hu, K. W. Yeung, Y. Q. Liu and H. M. Liem, J APPL POLYM SCI 2006, 100, 4603.
Google Scholar
[4]
Y. Zhu, The Hong Kong Polytechnic Universtiy 2008.
Google Scholar
[5]
H. Zhang, H. T. Wang, W. Zhong and Q. G. Du, POLYMER 2009, 50, 1596.
Google Scholar
[6]
T. S. Wilson, J. P. Bearinger, J. L. Herberg, J. E. Marion, W. J. Wright, C. L. Evans and D. J. Maitland, J APPL POLYM SCI 2007, 106, 540.
DOI: 10.1002/app.26593
Google Scholar
[7]
R. A. Weiss, E. Izzo and S. Mandelbaum, MACROMOLECULES 2008, 41, 2978.
Google Scholar
[8]
Y. L. Wang, Y. G. Li, Y. F. Luo, M. N. Huang and Z. Q. Liang, MATER LETT 2009, 63, 347
Google Scholar
[9]
M. Behl and A. Lendlein, Soft Matter 2007, 3, 58.
Google Scholar
[10]
C. Liu, H. Qin and P. T. Mather, J MATER CHEM 2007, 17, 1543.
Google Scholar
[11]
A. Lendlein and S. Kelch, ANGEW CHEM INT EDIT 2002, 41, 2034.
Google Scholar
[12]
S. Mondal, Mini-Reviews in Organic Chemistry 2009, 6, 114
Google Scholar
[13]
S. J. Chen, J. L. Hu, Y. Q. Liu, H. M. Liem, Y. Zhu and Q. H. Meng, POLYM INT 2007, 56, 1128.
Google Scholar
[14]
H. M. Jeong, S. Y. Lee and B. K. Kim, J MATER SCI 2000, 35, 1579.
Google Scholar
[15]
B. K. Kim, J. S. Lee, Y. M. Lee, J. H. Shin and S. H. Park, J MACROMOL SCI PHYS 2001, B40, 1179.
Google Scholar
[16]
T. Chung, A. Rorno-Uribe and P. T. Mather, MACROMOLECULES 2008, 41, 184.
Google Scholar
[17]
P. Ping, W. S. Wang, X. S. Chen and X. B. Jing, BIOMACROMOLECULES 2005, 6, 587.
Google Scholar
[18]
18.B. S. Lee, B. C. Chun, Y. C. Chung, K. I. Sul and J. W. Cho, MACROMOLECULES 2001, 34, 6431.
Google Scholar
[19]
S. Neuss, I. Blomenkamp, R. Stainforth, D. Boltersdorf, M. Jansen, N. Butz, A. Perez-Bouza and R. Knuchel, BIOMATERIALS 2009, 30, 1697.
DOI: 10.1016/j.biomaterials.2008.12.027
Google Scholar
[20]
K. Hiraoka, N. Tagawa and K. Baba, MACROMOL CHEM PHYS 2008, 209, 298.
Google Scholar
[21]
J. V. Selinger and B. R. Ratna, PHYS REV E 2004, 70.
Google Scholar
[22]
M. H. Li, P. Keller, J. Y. Yang and P. A. Albouy, ADV ENG MATER 2004, 16, 1922.
Google Scholar
[23]
D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy and B. R. Ratna, MACROMOLECULES 2001, 34, 5868.
DOI: 10.1021/ma001639q
Google Scholar
[24]
A. Lendlein and M. Behl, Smart Materials & Micro/Nanosystems 2009, 54, 96.
Google Scholar
[25]
W. Sokolowski, A. Metcalfe, S. Hayashi, L. Yahia and J. Raymond, Biomedical Materials 2007, 2, S23.
Google Scholar
[26]
Hu, J., Shape-Memory Polymer Textile, in Shape-Memory Polymers and Multifunctional Composites. 2010, CRC Press. pp.293-313.
DOI: 10.1201/9781420090208-c10
Google Scholar
[27]
Zhu, Y., et al., Development of shape memory polyurethane fiber with complete shape recoverability. Smart Materials & Structures, 2006. 15(5): pp.1385-1394.
DOI: 10.1088/0964-1726/15/5/027
Google Scholar
[28]
Ji, F.L., et al., Smart polymer fibers with shape memory effect. Smart Materials & Structures, 2006. 15(6): pp.1547-1554.
DOI: 10.1088/0964-1726/15/6/006
Google Scholar
[29]
Kaursoin, J. and A.K. Agrawal, Melt spun thermoresponsive shape memory fibers based on polyurethanes: Effect of drawing and heat-setting on fiber morphology and properties. Journal of Applied Polymer Science, 2007. 103(4): pp.2172-2182.
DOI: 10.1002/app.25124
Google Scholar
[30]
Meng, Q.H., et al., Morphology, phase separation, thermal and mechanical property differences of shape memory fibres prepared by different spinning methods. Smart Materials & Structures, 2007. 16(4): pp.1192-1197.
DOI: 10.1088/0964-1726/16/4/030
Google Scholar
[31]
Meng, Q.H., J.L. Hu, and L. Yeung, An electro-active shape memory fibre by incorporating multi-walled carbon nanotubes. Smart Materials & Structures, 2007. 16(3): pp.830-836.
DOI: 10.1088/0964-1726/16/3/032
Google Scholar
[32]
Meng, Q.H. and J.L. Hu, A temperature-regulating fiber made of PEG-based smart copolymer. Solar Energy Materials and Solar Cells, 2008. 92(10): pp.1245-1252.
DOI: 10.1016/j.solmat.2008.04.027
Google Scholar
[33]
Liu, Y., et al., Shape memory behavior of SMPU knitted fabric. Journal of Zhejiang University - Science A, 2007. 8(5): pp.830-834.
DOI: 10.1631/jzus.2007.a0830
Google Scholar
[34]
Lu, J. and J.L. Hu, Study on the Properties of Core Spun Yarn and Fabrics of Shape Memory Polyurethane. Fibres & Textiles in Eastern Europe, 2010. 18: pp.39-42.
Google Scholar
[35]
Ye Qiu, L., et al., Surface modification of cotton fabric by grafting of polyurethane. Carbohydrate Polymers, 2005. 61(3): pp.276-280.
DOI: 10.1016/j.carbpol.2005.03.010
Google Scholar
[36]
Liu, Y., Y.J. Zheng, and J.L. Hu, Wool fabric formative memory finishing agent with polyurethane, its synthesis and use thereof [P] 2006.
Google Scholar
[37]
Liem, H., L.Y. Yeung, and J.L. Hu, A prerequisite for the effective transfer of the shape-memory effect to cotton fibers. Smart Materials & Structures, 2007. 16(3): pp.748-753.
DOI: 10.1088/0964-1726/16/3/023
Google Scholar
[38]
Jin, G.X., Effect of structure parameters on memory properties of thermo-sensitive shape-memory woven fabrics. J Text Res, 2010. 31: pp.40-44.
Google Scholar
[39]
Hu, J.L., et al., Preparation of Polyurethane Composition and Finishing Technologies to Produce Shape Memory Knitted Wool Fabrics/Garments [P]. 2009.
Google Scholar
[40]
Chan, Y., et al., The Concept of Aesthetic Intelligence of Textile Fabrics and their Application for Interior and Apparel, in IFFTI. 2002: The Hong Kong Polytechnic University.
Google Scholar
[41]
Zhuo, H.T., J.L. Hu, and S.J. Chen, Electrospun polyurethane nanofibres having shape memory effect. Materials Letters, 2008. 62(14): pp.2074-2076.
DOI: 10.1016/j.matlet.2007.11.018
Google Scholar
[42]
Zhuo, H.T., et al., Preparation of polyurethane nanofibers by electrospinning. Journal of Applied Polymer Science, 2008. 109(1): pp.406-411.
Google Scholar
[43]
Jung, Y.C., et al., Shape memory polyurethane nanofibers. Quality Textiles for Quality Life, 2004. 1-4: pp.43-46.
Google Scholar
[44]
Cha, D.I., et al., Electrospun nonwovens of shape-memory polyurethane block copolymers. Journal of Applied Polymer Science, 2005. 96(2): pp.460-465.
DOI: 10.1002/app.21467
Google Scholar
[45]
Chung, S.E., et al., Thermoresponsive shape memory characteristics of polyurethane electrospun web. Journal of Applied Polymer Science, 2011. 120(1): pp.492-500.
DOI: 10.1002/app.33167
Google Scholar
[46]
Zhuo, H., J. Hu, and S. Chen, Study of the thermal properties of shape memory polyurethane nanofibrous nonwoven. Journal of Materials Science, 2011. 46: pp.3464-3469.
DOI: 10.1007/s10853-011-5251-z
Google Scholar
[47]
J., J., et al., Electroactuation of Alkoxysilane-Functionalized Polyferrocenylsilane Microfibers. Journal of the Amercan Chemical Society 2010. 132(10): pp.3236-3237.
DOI: 10.1021/ja9089236
Google Scholar
[48]
Zhuo, H.T., J.L. Hu, and S.J. Chen, Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials. Express Polymer Letters, 2011. 5(2): pp.182-187.
DOI: 10.3144/expresspolymlett.2011.16
Google Scholar
[49]
Zhuo, H., J. Hu, and S. Chen, Study of water vapor permeability of shape memory polyurethane nanofibrous nonwovens. Textile Research Journal 2011 81(9): pp.883-891.
DOI: 10.1177/0040517510392469
Google Scholar
[50]
Tobushi, H., et al., Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Materials & Structures, 1996. 5: pp.483-491.
DOI: 10.1088/0964-1726/5/4/012
Google Scholar
[51]
Chan Vili, Y.Y.F., Investigating Smart Textiles Based on Shape Memory Materials. Textile Research Journal, 2007. 77(5): pp.290-300.
DOI: 10.1177/0040517507078794
Google Scholar
[52]
Ding, X.M., J.L. Hu, and X.M. Tao, Effect of crystal melting on water vapor permeability of shape-memory polyurethane film. Textile Research Journal, 2004. 74(1): pp.39-43.
DOI: 10.1177/004051750407400107
Google Scholar
[53]
Stylios, G.K. and T.Y. Wan, Shape memory training for smart fabrics. Transactions of the Institute of Measurement and Control, 2007. 29(3-4): pp.321-336.
DOI: 10.1177/0142331207069479
Google Scholar
[54]
Chen, S.J., et al., Effect of molecular weight on shape memory behavior in polyurethane films. Polymer International, 2007. 56(9): pp.1128-1134.
Google Scholar
[55]
Hu, J.L., Y.M. Zeng, and H.J. Yan, Influence of processing conditions on the microstructure and properties of shape memory polyurethane membranes. Textile Research Journal, 2003. 73(2): pp.172-178.
DOI: 10.1177/004051750307300214
Google Scholar
[56]
Jeong, H.M., et al., Water vapor permeability of shape memory polyurethane with amorphous reversible phase. Journal Of Polymer Science Part B-Polymer Physics, 2000. 38(23): pp.3009-3017.
DOI: 10.1002/1099-0488(20001201)38:23<3009::aid-polb30>3.0.co;2-8
Google Scholar
[57]
Mondal, S. and J.L. Hu, Segmented shape memory polyurethane and its water vapor transport properties. Designed Monomers and Polymers, 2006. 9(6): pp.527-550.
DOI: 10.1163/156855506778944028
Google Scholar
[58]
Mondal, S. and J.L. Hu, Water vapor permeability of cotton fabrics coated with shape memory polyurethane. Carbohydrate Polymers, 2007. 67(3): pp.282-287.
DOI: 10.1016/j.carbpol.2006.05.030
Google Scholar
[59]
Meng, Q.H., et al., Biological Evaluations of a Smart Shape Memory Fabric. Textile Research Journal, 2009. 79(16): pp.1522-1533.
DOI: 10.1177/0040517509101789
Google Scholar
[60]
Dong, Z.E., et al., The Performance Evaluation of the Woven Wool Fabrics Treated with Shape Memory Polymers. International Journal of Sheep and Wool Science, 2008. 56.
Google Scholar
[61]
Kiyoshi, O., Gloves made of plastic. 1998: Japan.
Google Scholar
[62]
Hu, J.L., et al., The Investigation about the Shape Memory Behavior of Wool. Advances in Science and Technology, 2008. 60.
Google Scholar