[1]
A. Hanaor and R. Levy, Evaluations of Deployable Structures for Space Enclosures, Int. J. of Space Structures 16 (2001) 211-29.
DOI: 10.1260/026635101760832172
Google Scholar
[2]
M. R. Golabchi and S. D. Guest, Morphing multistable textured shells, Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, Proc. of the IASS Symposium, (Valencia, Spain, 28 Sept. – 2 Oct. 2009).
Google Scholar
[3]
B. P. Trease and S. Kota, Synthesis of Adaptive and Controllable Compliant Systems with Embedded Actuators and Sensors, Proceedings of IDETC/CIE 2006 ASME 2006 Int. Design Engng. Technical Conf. & Computers and Information in Engng. Conf., (Philadelphia, USA, September 10-13 2006).
DOI: 10.1115/detc2006-99266
Google Scholar
[4]
S. Kota, M. S., Rodgers, and J.A. Hetrick, Compliant Displacement-Multiplying Apparatus for Microelectromechanical Systems, United States Patent 6, 175, 170 (2001).
Google Scholar
[5]
K. J. Lu, Synthesis of Shape Morphing Compliant Mechanisms, Ph.D. Thesis, The University of Michigan (2004).
Google Scholar
[6]
R. Buckminster Fuller, Synergetics explorations in the geometry of thinking, Collier Macmillan Publishers, London, (1978).
Google Scholar
[7]
R. E. Skelton and M. C. de Oliveira, Tensegrity Systems, Springer Science + Business Media, New York, (2009).
Google Scholar
[8]
M. Pedretti M., Smart Tensegrity Structures for the Swiss EXPO, SPIE Proceedings 30 (1998) 3330-48.
Google Scholar
[9]
A. E. Del Grosso, A. Barsotti and F. de Barbieri, Active Control of Self-Deployable Structures. 2nd World Conf. on Structural Control (T. Kobori et al. Eds. ), Wiley & Sons, Chichester, 1999, 1957-66.
Google Scholar
[10]
T. d'Estree Sterk, Shape Control in Responsive Architectural Structures. Responsive Architectures-Subtle Technologies (C. Turner Ed. ), Riverside Architectural Press, Cambridge, Ontario, (2006).
Google Scholar
[11]
J. T. Wang and A. R. Johnson, Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures. NASA/TM-2003-212410 ARL-TR-2973 (2003).
Google Scholar
[12]
A. Böegle, M. Schlaich and C. Hartz, Pneumatic structures in motion. Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, Proc. of the IASS Symposium (Valencia, Spain, 28 Sept. – 2 Oct. 2009).
Google Scholar
[13]
O. Popovic, The architectural potential of the reciprocal frame, PhD Thesis, University of Nottingham, (1996).
Google Scholar
[14]
O. Baverel, Nexorades: A family of interwoven space structures, PhD Thesis, University of Surrey, (2000).
Google Scholar
[15]
J. P. Rizzuto, Notched Mutually Supported Element (MSE) Circuits in Space Structures, Proc. of IASS-APCS Symp. (Beijing, China, 2006).
Google Scholar
[16]
D. Parigi, M. Sassone, P. Napoli, Kinematic and static analysis of plane reciprocal frames. Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, Proc. of the IASS Symposium (Valencia, Spain, 28 Sept. – 2 Oct. 2009).
Google Scholar
[17]
F. Heinzelmann, Lightweight origami structures and day lighting modulation. Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, Proc. of the IASS Symposium (Valencia, Spain, 28 Sept. – 2 Oct. 2009).
Google Scholar
[18]
S. M. Belcastro and T. Hull, Modelling the folding of paper into three dimensions using affine transformations, Linear Algebra and its Applications, 348 (2002) 273-82.
DOI: 10.1016/s0024-3795(01)00608-5
Google Scholar
[29]
D. J. Balkcom, E. D. Demaine and M. L. Demaine, Folding Paper Shopping Bags, 14th Annual Fall Workshop on Computational Geometry (Cambridge, Massachusetts, November 19–20, 2004).
Google Scholar
[20]
K. Miura, Triangles and Quadrangles in Space. Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, Proc. of the IASS Symposium (Valencia, Spain, 28 Sept. – 2 Oct. 2009).
Google Scholar
[21]
K. Miura, Proposition of pseudo-cylindrical concave polyhedral shells, Proc. of IASS Symp. on Folded Plates and Prismatic Structures (1970).
Google Scholar
[22]
T. Tachi, Geometric Considerations for the Design of Rigid Origami Structures. In IASS Symposium 2010. Shanghai, China (2010).
Google Scholar
[23]
A. Y. N. Sofla, D. M. Elzey and H. N. G. Wadley, Shape morphing hinged truss structures. Smart Materials and Structures, 18 (2009).
DOI: 10.1088/0964-1726/18/6/065012
Google Scholar
[24]
A. Y. N. Sofla, D. M. Elzey and H. N. G. Wadley, A rotational joint for shape morphing space truss structures, Smart Materials and Structures, 16 (2007) 1277-84.
DOI: 10.1088/0964-1726/16/4/040
Google Scholar
[25]
F. Inoue, Development of Adaptive Construction Structure by Variable Geometry Truss. Robotics and Automation in Construction (C. Balaguer and M. Abderrahim Eds. ), InTech Education and Publishing, Vienna (2008) 253-272.
DOI: 10.5772/5543
Google Scholar
[26]
E. P. Piñero, Expandable Space Framing, Progressive Architecture 12 (1962) 154-55.
Google Scholar
[27]
S. Calatrava, Zur Faltbarkeit Von Fachwerken, Phd. Thesis, ETH Zurich, (1981).
Google Scholar
[28]
C. Hoberman, Unfolding Architecture: An Object That is Identically a Structure and a Mechanism, Architectural Design, 63 (1993) 56-59.
Google Scholar
[29]
S. Pellegrino and Z. You, Cable-Stiffened Pantographic Deployable Structures, AIAA Journal 35 (1997) 1348-55.
DOI: 10.2514/3.13675
Google Scholar
[30]
Y. Akgün, W. Haase and W. Sobek, Proposal for a New Scissor-Hinge Structure to Create Transformable and Adaptive Roofs. IASS Symp. Architectural Engineering -Towards the future looking to the past (Venezia, Italy, 2007).
Google Scholar
[31]
Y. Akgün, J. Charis, C. J. Gantes, E.K. Kalochairetis. and G. Kiper, A novel concept of convertible roofs with high transformability consisting of planar scissor-hinge structures. Engineering Structures, 32(9) (2010) 2873-2883.
DOI: 10.1016/j.engstruct.2010.05.006
Google Scholar
[32]
R. Barents, M. Schenk, W. D. Van Dorsser, B. M. Wisse and J. L. Herder, J.L. (2011), Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators, ASME Journal of Mechanical Design, 133(6) (2011) 061010.
DOI: 10.1115/1.4004101
Google Scholar
[33]
S. D. Guest, E. Kebadze and S. Pellegrino, A zero-stiffness elastic shell structure, Journal of Mechanics of Materials and Structures, 6(1-4) (2011) 203-212.
DOI: 10.2140/jomms.2011.6.203
Google Scholar
[34]
T. Tachi, Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh, Proceedings of Advanced in Architectural Geometry (AAG) 2010, Wien.
DOI: 10.1515/9783990433713-007
Google Scholar
[35]
A. E. Del Grosso and P. Basso, A Finite State Strategy for the Control of Adaptive Structural Envelopes, ICAST2011 : 22nd International Conference on Adaptive Structures and Technologies, October 10-12 2011, Corfu, Greece.
Google Scholar