[1]
N.W. Haygood, W.H. Chung, A. von, Modelling of piezoelectric actuator dynamics for active structural control, J. of Intell. Mater. Syst. and Struct. 1 (1990) 327–354.
Google Scholar
[2]
S. Roundy, P.K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Mater. and Struct. 13 (2004) 1131-1142.
DOI: 10.1088/0964-1726/13/5/018
Google Scholar
[3]
Information on http://www.mide.com/
Google Scholar
[4]
J. Borgeson, Ultra-low-power pioneers: TI slashes total MCU power by 50 percent with new "Wolverine" MCU platform. (2012) http://www.ti.com/lit/wp/slay019a/slay019a.pdf
Google Scholar
[5]
T. Reissman, R.B. MacCurdy, E. and Garcia, Electrical Power Generation From Insect Flight, Proc. SPIE Smart Struct. and Mater.: Active and Passive Smart Struct. and Int. Syst., March 6-10, San Diego, CA, (2011).
DOI: 10.1117/12.880702
Google Scholar
[6]
T. Reissman, and E. Garcia, Surgically Implanted Energy Harvesting Devices for Renewable Power Sources in Insect Cyborgs, Proc. ASME IMECE, Oct 31 - Nov 6, Boston, MA, (2008).
DOI: 10.1115/imece2008-68136
Google Scholar
[7]
T. Reissman, and E. Garcia, An Ultra-Lightweight Multi-Source Power Harvesting System for Insect Cyborg Sentinels, Proc. ASME SMASIS, Oct 28-30, Ellicott City, MD, (2008).
DOI: 10.1115/smasis2008-662
Google Scholar
[8]
M. Shafer, R. Tiwari, and E. Garcia, Closed loop control in the tobacco Hawkmoth, Manduca sexta, Proc. SPIE Smart Struct. and Mater.: Active and Passive Smart Struct. and Int. Syst., March 6-10, San Diego, CA, (2011).
DOI: 10.1117/12.880686
Google Scholar
[9]
W.J. Wu, A.M. Wickenheiser, T. Reissman, and E. Garcia. Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers, Smart Mater. Struct. 18 (2009).
DOI: 10.1088/0964-1726/18/5/055012
Google Scholar
[10]
J. H. Marden, Maximum lift production during takeoff in flying animals, J. Exp. Biol. 130 (1987) 235-258.
DOI: 10.1242/jeb.130.1.235
Google Scholar
[11]
USGS, How to request auxiliary marking permission. http://www.pwrc.usgs.gov/bbl/ manual/aarequs.cfm, 2011. [Online; accessed February 28, 2012].
Google Scholar
[12]
C. Pennycuick, Modeling the Flying Bird, Academic Press, 2008.
Google Scholar
[13]
M. W. Shafer and E. Garcia, Maximum and practical sustainably harvestable vibrational power from avian subjects, Proc. ASME SMASIS 54723 (2011), 353-359.
DOI: 10.1115/smasis2011-5167
Google Scholar
[14]
C.J. Pennycuick, Predicting Wingbeat Frequency and Wavelength of Birds, J. Exp. Biol. 150 (1990) 171-185.
DOI: 10.1242/jeb.150.1.171
Google Scholar
[15]
M.W. Shafer, M. Bryant, and E. Garcia, Designing maximum power output into piezoelectric energy harvesters. Smart Materials and Structures. (In press).
DOI: 10.1088/0964-1726/21/8/085008
Google Scholar
[16]
S. R. Anton, H. A. Sodano, A Review of Power Harvesting Using Piezoelectric Materials (2003-2006), Smart Mat. and Struct. 16 (2007) R1-R21.
DOI: 10.1088/0964-1726/16/3/r01
Google Scholar
[17]
M. Bryant, E. Garcia, Development of an Aeroelastic Vibration Power Harvester, Proc. SPIE Smart Struct. and Mater.: Active and Passive Smart Struct. and Int. Syst., March 8-12, San Diego, CA. (2009).
DOI: 10.1117/12.815785
Google Scholar
[18]
M. Bryant, E. Garcia, Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester, J. Vib. Acoust. 133 (2011).
Google Scholar
[19]
M. Bryant, E. Wolff, E. Garcia, Aeroelastic Flutter Energy Harvester Design: The Sensitivity of the Driving Instability to System Parameters, Smart Mater. Struct., 20 (2011) 125017.
DOI: 10.1088/0964-1726/20/12/125017
Google Scholar
[20]
M. Bryant, R. L. Mahtani, E. Garcia, Wake Synergies Enhance Performance in Aeroelastic Vibration Energy Harvesting," J. Intell. Mater. Syst. and Struct. (in press).
Google Scholar
[21]
E. H. Dowell, H. C. Curtiss, Jr., R. H. Scanlan, F. Sisto, A Modern Course in Aeroelasticity, Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands, 1983.
DOI: 10.1177/058310248001200205
Google Scholar
[22]
D. H. Hodges, G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity, Cambridge University Press, Cambridge, UK, 2002.
Google Scholar
[23]
H. A. Sodano, G. Park, D. J. Inman, Estimation of Electric Charge Output for Piezoelectric Energy Harvesting, J. Strain 40 (2004) 49-58.
DOI: 10.1111/j.1475-1305.2004.00120.x
Google Scholar
[24]
C. T. Tran, D. Petot, Semi-Empirical Model for the Dynamic Stall of Airfoils in View of Application to the Calculated Responses of a Helicopter in Forward Flight, Vertica 5 (1981) 35-53.
Google Scholar
[25]
D. Dat, C. T. Tran, Investigation of the Stall Flutter of an Airfoil with a Semi-empirical Model of 2-D Flow, Vertica 7 (1983) 73-86.
Google Scholar
[26]
W. E. Baker, W. E. Woolam, D. Young, Air and Internal Damping of Thin Cantilever Beams, Int. J. Mech. Sci. 9 (1967) 743-766.
DOI: 10.1016/0020-7403(67)90032-x
Google Scholar
[27]
L. Ristroph, J. Zhang, Anomalous Hydrodynamic Drafting of Interacting Flapping Flags, Physical Review Letters 101 (2008) 194502.
DOI: 10.1103/physrevlett.101.194502
Google Scholar
[28]
L. B. Jia, X. Z. Yin, Passive Oscillations of Two Tandem Flexible Filaments in a Flowing Soap Film, Physical Review Letters, 100 (2008) 228104.
DOI: 10.1103/physrevlett.100.228104
Google Scholar
[29]
C. Park, P.H. Chou, Ambimax: autonomous energy harvesting platform for multi-supply wireless sensor nodes, Proc. IEEE SECON (2006) 168-177.
DOI: 10.1109/sahcn.2006.288421
Google Scholar
[30]
R. Morais, S.G. Matos, M.A. Fernandes, A.L.G. Valente, S.F.S.P. Soares, P.J.S.G. Ferreira, M.J.C.S. Reis, Sun, wind and water flow as energy supply for small stationary data acquisition platforms, J. Comp. and Elect. In Agric., 64 (2008) 120-132.
DOI: 10.1016/j.compag.2008.04.005
Google Scholar
[31]
R. MacCurdy, T. Reissman, E. Garcia, D. Winkler, A methodology for applying energy harvesting to extend wildlife tag lifetime, Proc. ASME IMECE (2008).
DOI: 10.1115/imece2008-68082
Google Scholar
[32]
A. Wickenheiser, E. Garcia, Combined power harvesting from AC and DC sources, Proc. SPIE Int. Symp. Smart Struct. Smart Mater. (2009).
DOI: 10.1117/12.817305
Google Scholar
[33]
A. Schlichting, R. Tiwari, E. Garcia, Passive multi-source energy harvesting schemes, J. Intell. Mater. Syst. Struct. (in Press).
Google Scholar
[34]
A. Schlichting, M. Shafer, E. Garcia, Multi-Source Energy Harvesting Schemes with Piezoelectrics and Photovoltaics and System Power Management for an Avian Bio-logger, Proc. ASME SMASIS (2012).
DOI: 10.1115/smasis2012-8130
Google Scholar
[35]
E. Lefeuvre, A. Badel, C. Richard, D. Guyomar, Piezoelectric energy harvesting device optimization by synchronous electric charge extraction, J. Intell. Mater. Syst. Struct. 16 (2005).
DOI: 10.1177/1045389x05056859
Google Scholar
[36]
A. Wickenheiser, E. Garcia, Power optimization of vibration energy harvesters utilizing passive and active circuits, J. Intell. Mat. Syst. Str. 21 (2010) 1343-1361.
DOI: 10.1177/1045389x10376678
Google Scholar
[37]
L. Chao, C.Y. Tsui, W.H. Ki, Vibration energy scavenging and management for ultra low power applications, Proc. Int. Symp. Low Power Elect. And Design (2007).
DOI: 10.1145/1283780.1283848
Google Scholar
[38]
M. Lallart, D. Guyomar, An optimized self-powered switching circuit for nonlinear energy harvesting with low voltage output, Smart Mater. Struct. 17 (2008).
DOI: 10.1088/0964-1726/17/3/035030
Google Scholar
[39]
E. Garcia, R. Tiwari, K. Ryoo, A. Schlichting, N. Buch, Piezoelectric energy harvesting apparatus, methods, and applications, Provisional Patent 61,619,027 (2012).
Google Scholar
[40]
Dunnmon, J.A., S.C. Stanton, B.P. Mann, and E.H. Dowell, Power extraction from aeroelastic limit cycle oscillations. J. Fluids Struct. 27 (8): 1182-1198 (2011).
DOI: 10.1016/j.jfluidstructs.2011.02.003
Google Scholar