Insight and Applications in Energy Harvesting from Bullets to Birds

Article Preview

Abstract:

Power requirements for microelectronics continue a downward trend and power production from vibrational power harvesting is ever increasing. The result is a convergence of technology that will allow for previously unattainable systems, such as infinite life wireless sensor nodes, health monitoring systems, and environmental monitoring tags, among others. The Laboratory of Intelligent Machine Systems at Cornell University has made many significant contributions to this field, pioneering new applications of piezoelectric energy harvesting, as well as contributing to harvesting circuitry and mechanical design theory. In this work, we present a variety of new applications for energy harvesting technology, including infinite life avian based bio-loggers, flutter induced vibrational wind power, and in-flight energy harvesting in munitions. We also present theoretical contributions to the field including an energy harvester beam design guide and multisource energy harvesting circuitry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-68

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.W. Haygood, W.H. Chung, A. von, Modelling of piezoelectric actuator dynamics for active structural control, J. of Intell. Mater. Syst. and Struct. 1 (1990) 327–354.

Google Scholar

[2] S. Roundy, P.K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Mater. and Struct. 13 (2004) 1131-1142.

DOI: 10.1088/0964-1726/13/5/018

Google Scholar

[3] Information on http://www.mide.com/

Google Scholar

[4] J. Borgeson, Ultra-low-power pioneers: TI slashes total MCU power by 50 percent with new "Wolverine" MCU platform. (2012) http://www.ti.com/lit/wp/slay019a/slay019a.pdf

Google Scholar

[5] T. Reissman, R.B. MacCurdy, E. and Garcia, Electrical Power Generation From Insect Flight, Proc. SPIE Smart Struct. and Mater.: Active and Passive Smart Struct. and Int. Syst., March 6-10, San Diego, CA, (2011).

DOI: 10.1117/12.880702

Google Scholar

[6] T. Reissman, and E. Garcia, Surgically Implanted Energy Harvesting Devices for Renewable Power Sources in Insect Cyborgs, Proc. ASME IMECE, Oct 31 - Nov 6, Boston, MA, (2008).

DOI: 10.1115/imece2008-68136

Google Scholar

[7] T. Reissman, and E. Garcia, An Ultra-Lightweight Multi-Source Power Harvesting System for Insect Cyborg Sentinels, Proc. ASME SMASIS, Oct 28-30, Ellicott City, MD, (2008).

DOI: 10.1115/smasis2008-662

Google Scholar

[8] M. Shafer, R. Tiwari, and E. Garcia, Closed loop control in the tobacco Hawkmoth, Manduca sexta, Proc. SPIE Smart Struct. and Mater.: Active and Passive Smart Struct. and Int. Syst., March 6-10, San Diego, CA, (2011).

DOI: 10.1117/12.880686

Google Scholar

[9] W.J. Wu, A.M. Wickenheiser, T. Reissman, and E. Garcia. Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers, Smart Mater. Struct. 18 (2009).

DOI: 10.1088/0964-1726/18/5/055012

Google Scholar

[10] J. H. Marden, Maximum lift production during takeoff in flying animals, J. Exp. Biol. 130 (1987) 235-258.

DOI: 10.1242/jeb.130.1.235

Google Scholar

[11] USGS, How to request auxiliary marking permission. http://www.pwrc.usgs.gov/bbl/ manual/aarequs.cfm, 2011. [Online; accessed February 28, 2012].

Google Scholar

[12] C. Pennycuick, Modeling the Flying Bird, Academic Press, 2008.

Google Scholar

[13] M. W. Shafer and E. Garcia, Maximum and practical sustainably harvestable vibrational power from avian subjects, Proc. ASME SMASIS 54723 (2011), 353-359.

DOI: 10.1115/smasis2011-5167

Google Scholar

[14] C.J. Pennycuick, Predicting Wingbeat Frequency and Wavelength of Birds, J. Exp. Biol. 150 (1990) 171-185.

DOI: 10.1242/jeb.150.1.171

Google Scholar

[15] M.W. Shafer, M. Bryant, and E. Garcia, Designing maximum power output into piezoelectric energy harvesters. Smart Materials and Structures. (In press).

DOI: 10.1088/0964-1726/21/8/085008

Google Scholar

[16] S. R. Anton, H. A. Sodano, A Review of Power Harvesting Using Piezoelectric Materials (2003-2006), Smart Mat. and Struct. 16 (2007) R1-R21.

DOI: 10.1088/0964-1726/16/3/r01

Google Scholar

[17] M. Bryant, E. Garcia, Development of an Aeroelastic Vibration Power Harvester, Proc. SPIE Smart Struct. and Mater.: Active and Passive Smart Struct. and Int. Syst., March 8-12, San Diego, CA. (2009).

DOI: 10.1117/12.815785

Google Scholar

[18] M. Bryant, E. Garcia, Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester, J. Vib. Acoust. 133 (2011).

Google Scholar

[19] M. Bryant, E. Wolff, E. Garcia, Aeroelastic Flutter Energy Harvester Design: The Sensitivity of the Driving Instability to System Parameters, Smart Mater. Struct., 20 (2011) 125017.

DOI: 10.1088/0964-1726/20/12/125017

Google Scholar

[20] M. Bryant, R. L. Mahtani, E. Garcia, Wake Synergies Enhance Performance in Aeroelastic Vibration Energy Harvesting," J. Intell. Mater. Syst. and Struct. (in press).

Google Scholar

[21] E. H. Dowell, H. C. Curtiss, Jr., R. H. Scanlan, F. Sisto, A Modern Course in Aeroelasticity, Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands, 1983.

DOI: 10.1177/058310248001200205

Google Scholar

[22] D. H. Hodges, G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity, Cambridge University Press, Cambridge, UK, 2002.

Google Scholar

[23] H. A. Sodano, G. Park, D. J. Inman, Estimation of Electric Charge Output for Piezoelectric Energy Harvesting, J. Strain 40 (2004) 49-58.

DOI: 10.1111/j.1475-1305.2004.00120.x

Google Scholar

[24] C. T. Tran, D. Petot, Semi-Empirical Model for the Dynamic Stall of Airfoils in View of Application to the Calculated Responses of a Helicopter in Forward Flight, Vertica 5 (1981) 35-53.

Google Scholar

[25] D. Dat, C. T. Tran, Investigation of the Stall Flutter of an Airfoil with a Semi-empirical Model of 2-D Flow, Vertica 7 (1983) 73-86.

Google Scholar

[26] W. E. Baker, W. E. Woolam, D. Young, Air and Internal Damping of Thin Cantilever Beams, Int. J. Mech. Sci. 9 (1967) 743-766.

DOI: 10.1016/0020-7403(67)90032-x

Google Scholar

[27] L. Ristroph, J. Zhang, Anomalous Hydrodynamic Drafting of Interacting Flapping Flags, Physical Review Letters 101 (2008) 194502.

DOI: 10.1103/physrevlett.101.194502

Google Scholar

[28] L. B. Jia, X. Z. Yin, Passive Oscillations of Two Tandem Flexible Filaments in a Flowing Soap Film, Physical Review Letters, 100 (2008) 228104.

DOI: 10.1103/physrevlett.100.228104

Google Scholar

[29] C. Park, P.H. Chou, Ambimax: autonomous energy harvesting platform for multi-supply wireless sensor nodes, Proc. IEEE SECON (2006) 168-177.

DOI: 10.1109/sahcn.2006.288421

Google Scholar

[30] R. Morais, S.G. Matos, M.A. Fernandes, A.L.G. Valente, S.F.S.P. Soares, P.J.S.G. Ferreira, M.J.C.S. Reis, Sun, wind and water flow as energy supply for small stationary data acquisition platforms, J. Comp. and Elect. In Agric., 64 (2008) 120-132.

DOI: 10.1016/j.compag.2008.04.005

Google Scholar

[31] R. MacCurdy, T. Reissman, E. Garcia, D. Winkler, A methodology for applying energy harvesting to extend wildlife tag lifetime, Proc. ASME IMECE (2008).

DOI: 10.1115/imece2008-68082

Google Scholar

[32] A. Wickenheiser, E. Garcia, Combined power harvesting from AC and DC sources, Proc. SPIE Int. Symp. Smart Struct. Smart Mater. (2009).

DOI: 10.1117/12.817305

Google Scholar

[33] A. Schlichting, R. Tiwari, E. Garcia, Passive multi-source energy harvesting schemes, J. Intell. Mater. Syst. Struct. (in Press).

Google Scholar

[34] A. Schlichting, M. Shafer, E. Garcia, Multi-Source Energy Harvesting Schemes with Piezoelectrics and Photovoltaics and System Power Management for an Avian Bio-logger, Proc. ASME SMASIS (2012).

DOI: 10.1115/smasis2012-8130

Google Scholar

[35] E. Lefeuvre, A. Badel, C. Richard, D. Guyomar, Piezoelectric energy harvesting device optimization by synchronous electric charge extraction, J. Intell. Mater. Syst. Struct. 16 (2005).

DOI: 10.1177/1045389x05056859

Google Scholar

[36] A. Wickenheiser, E. Garcia, Power optimization of vibration energy harvesters utilizing passive and active circuits, J. Intell. Mat. Syst. Str. 21 (2010) 1343-1361.

DOI: 10.1177/1045389x10376678

Google Scholar

[37] L. Chao, C.Y. Tsui, W.H. Ki, Vibration energy scavenging and management for ultra low power applications, Proc. Int. Symp. Low Power Elect. And Design (2007).

DOI: 10.1145/1283780.1283848

Google Scholar

[38] M. Lallart, D. Guyomar, An optimized self-powered switching circuit for nonlinear energy harvesting with low voltage output, Smart Mater. Struct. 17 (2008).

DOI: 10.1088/0964-1726/17/3/035030

Google Scholar

[39] E. Garcia, R. Tiwari, K. Ryoo, A. Schlichting, N. Buch, Piezoelectric energy harvesting apparatus, methods, and applications, Provisional Patent 61,619,027 (2012).

Google Scholar

[40] Dunnmon, J.A., S.C. Stanton, B.P. Mann, and E.H. Dowell, Power extraction from aeroelastic limit cycle oscillations. J. Fluids Struct. 27 (8): 1182-1198 (2011).

DOI: 10.1016/j.jfluidstructs.2011.02.003

Google Scholar