[1]
G. Despesse, T. Jager, J.J. Chaillout, et al., Design and Fabrication of a New System for Vibration Energy Harvesting, Proc. Ph.D. Res. Microelectron. Electron. 1 (2005) 225–228.
DOI: 10.1109/rme.2005.1543034
Google Scholar
[2]
S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications, Meas. Sci. Technol. 17 (2006) R175–R195.
DOI: 10.1088/0957-0233/17/12/r01
Google Scholar
[3]
J. Dewei, L. Jing LIU, Human power-based energy harvesting strategies for mobile electronic devices, Front. Energy Power Eng. China 3(1) (2009) 27–46.
DOI: 10.1007/s11708-009-0002-4
Google Scholar
[4]
F. Glynne-Jones, S.P. Beeby, N.M. White, Towards a piezoelectric vibration-powered microgenerator, IEE Proc. Sci. Mem. Technol. 148(2) (2001) 68-72.
DOI: 10.1049/ip-smt:20010323
Google Scholar
[5]
S. Zurn, M. Hsieh, G. Smith, et al., Fabrication and structural characterization of a resonant frequency PZT microcantilever, Smart Mater. Struct. 10 (2001) 252-263.
DOI: 10.1088/0964-1726/10/2/310
Google Scholar
[6]
S. Roundy, P.K. Wright, J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Computer Communications 26 (2003) 1131–1144.
DOI: 10.1016/s0140-3664(02)00248-7
Google Scholar
[7]
A. Erturk, D.J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Mater. Struct., 18 (2009) 1-18.
DOI: 10.1088/0964-1726/18/2/025009
Google Scholar
[8]
D. Shen, , S.Y. Choe, D.J. Kim, Analysis of Piezoelectric Materials for Energy Harvesting Devices Under High-g Vibrations, Jap. J. Appl. Phys., 46(10) (2007) 6755–6760.
DOI: 10.1143/jjap.46.6755
Google Scholar
[9]
D. Benasciutti, E. Brusa, L. Moro, S. Zelenika, Ottimizzazione di dispositivi piezoelettrici per accumulo di energia, Proceedings of XXXVII AIAS Conference, 2008, Rome, Italy.
Google Scholar
[10]
H.J. Song, Y.T. Choi, G. Wang, et al., Energy Harvesting Utilizing Single-Crystal PMN-PT Material and Application to a Self-Powered Accelerometer, J. Mech. Des. 131(9) (2009) 091008.
DOI: 10.1115/1.3160311
Google Scholar
[11]
M. Ferrari, V. Ferrari, M. Guizzetti, et al., Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems, Sens. Actuators, 142 (2008) 329–335.
DOI: 10.1016/j.sna.2007.07.004
Google Scholar
[12]
S. Qi, R. Shuttleworth, S.O. Oyadiji, Multiple Resonances Piezoelectric Energy Harvesting Generator, Proceedings of SMASIS, CA, (2009).
DOI: 10.1115/smasis2009-1455
Google Scholar
[13]
S.M. Shahruz, Design of Mechanical Band-Pass Filters for Energy Scavenging: Multi-Degree-of-Freedom Models, Mechatronics, 16 (2006) 523–531.
DOI: 10.1016/j.mechatronics.2006.04.003
Google Scholar
[14]
D. Castagnetti, Fractal-Inspired Multi-Frequency Structures for Piezoelectric Harvesting of Ambient Kinetic Energy, J. of Mech. Design, 133(11) (2011) 111005-1 - 111005-8.
DOI: 10.1115/1.4004984
Google Scholar
[15]
D. Castagnetti, Experimental modal analysis of fractal-inspired multi-frequency piezoelectric energy converters, Proceedings of SMASIS, 2011, Arizona.
DOI: 10.1115/smasis2011-4913
Google Scholar
[16]
Piezo System, Inc., USA, www. piezo. com.
Google Scholar
[17]
http: /www. dataphysics. com.
Google Scholar
[18]
TDS Miniature Accelerometers, on www. mmf. de.
Google Scholar
[19]
http: /www. polytec. com/us.
Google Scholar
[20]
http: /www. ni. com/products.
Google Scholar
[21]
http: /www. ni. com/labview.
Google Scholar
[22]
Simulia ABAQUS 6. 10-2, Users' manual. Providence, RI, USA: HKS Inc., (2010).
Google Scholar